Skip to main content

Analyses of plant chromatin and in vivo protein-DNA interactions

  • Chapter
  • 1090 Accesses

Abstract

It is increasingly apparent that gene function is influenced by a variety of constituents, only a few of which are effectively mimicked by in vitro analyses with linear, cloned pieces of genes. A diverse compliment of proteinacious interactions affect the structure and subsequent function of genes in the cell. The association between this compliment of proteins and the eukaryotic genome is referred to as chromatin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bers EP, Singh NP, Pardonen VA, Lutova LA, Zalensky AO (1992) Nucleosomal structure and histone H1 subfraction composition of pea (Pisum staivum) root nodules, radicles and callus chromatin. Plant Mol Biol 20: 1089–1096.

    Article  Google Scholar 

  2. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81: 1991–1995.

    Article  Google Scholar 

  3. Conconi A, Ryan CA (1993) DNase I and micrococcal analyses of the tomato proteinase inhibitor I gene in chromatin. J Biol Chem 268: 430–431.

    Google Scholar 

  4. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1: 19–23.

    Article  Google Scholar 

  5. Elgin SCR (1981) Anatomy of hypersensitive sites. Cell 27: 413–415.

    Article  Google Scholar 

  6. Ephrussi A, Chwch G, Tonegawa S, Gilbert W (1985) B lineage-specific interactions of an immunoglobin enhancer with cellular factors in vivo. Science 227: 134–140.

    Article  Google Scholar 

  7. Ferl RJ (1985) Modulation of chromatin structure in the regulation of the maize Adhl gene. Mol Gen Genet 200: 207–210.

    Article  Google Scholar 

  8. Ferl RJ, Laughner B (1989) In vivo detection of regulatory factor binding sites of Arabidopsis thaliana Adh. Plant Mol Biol 12: 357–366.

    Article  Google Scholar 

  9. Ferl RJ, Nick HN (1987) In vivo detection of regulatory factor binding sites in the 5′ flanking region of maize Adh1. J Biol Chem 262: 7947–7950.

    Google Scholar 

  10. Freid M, Crothers DM (1981) Equilibria and kinetics of lac repressor operator interaction by polyacrylamide gel electrophoresis. Nucl Acids Res 9: 6505–6526.

    Article  Google Scholar 

  11. Garrity PA, Wold B (1992) Effects of different polymerases in ligation-mediated PCR: Enhanced genomic sequencing and in vivo footprinting. Proc Natl Acad Sci USA 89: 1021–1025.

    Article  Google Scholar 

  12. Gorz A, Schafer W, Hirasawa E, Kahl G (1988) Constitutive and light-induced DNAse I hypersensitive sites in the rbcS genes of pea (Pisum sativum). Plant Mol Biol 11: 561–573.

    Article  Google Scholar 

  13. Green P, Kay S, Chua N-H (1987) Sequence specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J 6: 2543–2549.

    Google Scholar 

  14. Hammond-Kosack MCU, Holdsworth MJ, Bevan MW (1993) In vivo footprinting of a low molecular weight glutenin gene (LMWG-1D1) in wheat endosperm. EMBO J 12: 545–554.

    Google Scholar 

  15. Horastra IK, Yang TP (1993) In vivo footprinting and genomic sequencing by ligation mediated PCR. Anal Biochem 213 (in press).

    Google Scholar 

  16. Jensen EO, Marcker KA, Schell J, Bruijn FJ (1988) Interaction of a nodule specific, transacting factor with distinct DNA elements in the soybean leghaemoglobin 1bc3 5′ upstream region. EMBO J 7: 1265–1271.

    Google Scholar 

  17. Jofuku KD, Okamuro JK, Goldberg RB (1987) Interaction of an embryo DNA binding protein with a soybean lectin gene upstream region. Nature 328: 734–737.

    Article  Google Scholar 

  18. Kaufman LS, Watson JC, Thompson WF (1987) Light-regulated changes in DNase I hypersensitive sites in the rRNA genes of Pisum sativum. Proc Natl Acad Sci USA 84: 1550–1554.

    Article  Google Scholar 

  19. Lohr D, Tatchell K, Van Holde KE (1977) On the occurrence of nucleosome phasing in chromatin. Cell 12: 829–836.

    Article  Google Scholar 

  20. Luthe DS, Quatrano RS (1980) Transcription in isolated wheat nuclei; I. Isolation of nuclei and elimination of endogeneous ribonuclease activity. Plant Physiol 65: 305–308.

    Google Scholar 

  21. Maier U-G, Brown JWS, Toloczyki C, Feix G (1987) Binding of a nuclear factor to a consensus sequence in the 5′ flanking region of zein genes from maize. EMBO J 6: 17–22.

    Google Scholar 

  22. Maxam AM, Gilbert W (1980) Sequencing end-labelled DNA with base-specific chemical cleavages. Meth Enzymol 65: 499–560.

    Article  Google Scholar 

  23. McGhee JD, Felsenfeld G (1983) Another potential artifact in the study of nucleosome phasing by chromatin digestion with micrococcal nuclease. Cell 32: 1205–1215.

    Article  Google Scholar 

  24. McGhee JD, Nikol JM, Felsenfeld G, Rau DC (1983) High order of chromatin orientation of nucleosomes within the 30 nm chromatin selenoid is independent of species and spacer length. Cell 33: 831–841.

    Article  Google Scholar 

  25. Melton DA, King PA, Rebagliati MR, Maniatis T, Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucl Acids Res 12: 7035–7056.

    Article  Google Scholar 

  26. Mikami K, Tabata T, Kawata T, Nakayama T, Iwabuchi M (1987) Nuclear protein(s) binding to the conserved DNA hexameric sequence postulated to regulate transcription of wheat histone genes. FEBS Lett 223: 273–278.

    Article  Google Scholar 

  27. Mueller PR, Wold B (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246: 780–786.

    Article  Google Scholar 

  28. Murray MG, Kennard WC (1984) Altered chromatin conformation in plant gene phaseolin. Biochem 23: 4225–4232.

    Article  Google Scholar 

  29. Nick H, Bowen B, Ferl RJ, Gilbert W (1986) Detection of cytosine methylation in the maize alcohol dehydrogenase gene by genomic sequencing. Nature 319: 243–246.

    Article  Google Scholar 

  30. Nick H, Gilbert W (1985) Detection in vivo of protein-DNA interactions within the lac operon of Escherichia coli. Nature 313: 795–798.

    Article  Google Scholar 

  31. Paul A-L, Vasil V, Vasil IU, Ferl RJ (1987) Constitutive and anaerobically induced DNase I hypersensitive sites in the 5′ region of the maize Adh1 gene. Proc Natl Acad Sci USA 84: 799–803.

    Article  Google Scholar 

  32. Paul A-L, Ferl RJ (1991) In vivo footprinting reveals unique cis elements and different modes of hypoxic induction in maize Adhl and Adh2. Plant Cell 3: 159–168

    Google Scholar 

  33. Paul A-L, Ferl RJ (1993) Osmium tetroxide footprinting of a scaffold attachment region in the maize Adhl promoter. Plant Mol Biol Plant Mol Biol 22: 1145–1151.

    Article  Google Scholar 

  34. Riven CJ, Zimmer EA, Walbot V (1982) Isolation of DNA and DNA recombinants from maize. In: Sheridan WF (ed) Maize for Biological Research, pp. 161–165. Grand Forks, ND: University Press, University of North Dakota.

    Google Scholar 

  35. Saluz HP, Feavers IM, Jiricny J, Jost JP (1988) Genomic sequencing and in vivo footprinting of an expression-specific DNase I-hypersensitive site of avian vitellogenin II promoter reveal a demethylation of a mCpG and a change in specific interactions of proteins with DNA. Proc Natl Acad Sci USA 85: 6697–6700.

    Article  Google Scholar 

  36. Saluz HP, Jiricny J, Jost JP (1986) Genomic sequencing reveals a positive correlation between the kinetics of strand-specific DNA demethylation of the overlapping estradiol/ glucocorticoid-receptor binding sites and the rate of avian vitellogenin mRNA synthesis. Proc Natl Acad Sci USA 83: 7167–7171.

    Article  Google Scholar 

  37. Schulze-Lefert P, Dangl JL, Becker-André M, Hahlbrock K, Schulz W (1989) Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO J 8: 651–656.

    Google Scholar 

  38. Shure M, Wessler S, Fedoroff N (1983) Molecular identification and isolation of the waxy locus in maize. Cell 35: 225–233.

    Article  Google Scholar 

  39. Sorensen MB (1992) Methylation of B-hordein genes in the barley endosperm is inversely correlated with gene activity and affected by the regulatory gene Lys3. Proc Natl Acad Sci USA 89: 4119–4123.

    Article  Google Scholar 

  40. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–507.

    Article  Google Scholar 

  41. Spiker S, Murray MG, Thompson WF (1983) DNase I sensitivity of transcriptionally active genes in intact nuclei and isolated chromatin of plants. Proc Natl Acad Sci USA 80: 815–819.80

    Article  Google Scholar 

  42. Thomas GH, Elgin SCR (1988) Protein/DNA architecture of the DNase I hypersensitive region of the Drosophila hsp26 promoter. EMBO J 7: 2191–2201.

    Google Scholar 

  43. Thomas GH, Siegfried E, Elgin SCR (1985) DNase I hypersensitive sites: A structural feature of chromatin associated with gene expression. In: Reeck G, Goodwin G, Puig-domench P (ed) Chromosomal Proteins and Gene Expression, pp. 77–101. New York, NY: Plenum Press.

    Chapter  Google Scholar 

  44. Ull MA, Franco L (1986) The nucleosomal repeat length of pea (Pisum sativum) chromatin changes during germination. Plant Mol Biol 7: 25–31.

    Article  Google Scholar 

  45. Vayda ME, Freeling M (1986) Insertion of the Mu 1 transposable element into the first intron of maize Adh 1 interferes with transcript elongation but does not disrupt chromatin structure. Plant Mol Biol 6: 441–454.

    Article  Google Scholar 

  46. Watson AJ, Hankinson O (1992) Dioxin-and Ah receptor-dependent protein binding to xenobiotic responsive elements and G-rich DNA studied by in vivo footprinting. J Biol Chem 267: 6874–6878.

    Google Scholar 

  47. Weintraub H, Groudine H (1976) Chromosome subunits in active genes have an altered conformation. Science 193: 848–856.

    Article  Google Scholar 

  48. Weisbrod S (1982) Active chromatin. Nature 297: 289–295.

    Article  Google Scholar 

  49. Wu C (1980) The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286: 854–869.

    Article  Google Scholar 

  50. Wu C (1984) Two protein-binding sites in chromatin implicated in the activation of heat chock genes. Nature 309: 229–233.

    Article  Google Scholar 

  51. Wurtzel ET, Burr FA, Burr B (1987) DNase I hypersensitivity and expression of the Shrynken-1 gene of maize. Plant Mol Biol 8: 251–264.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paul, AL., Ferl, R.J. (1994). Analyses of plant chromatin and in vivo protein-DNA interactions. In: Gelvin, S.B., Schilperoort, R.A. (eds) Plant Molecular Biology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0511-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0511-8_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7654-5

  • Online ISBN: 978-94-011-0511-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics