Skip to main content

Reporter genes for plants

  • Chapter
Book cover Plant Molecular Biology Manual

Abstract

The principle of using reporter genes in studying molecular processes in a living cell means that in the natural gene, a synthetic modification is introduced (or the protein coding sequence is deleted and replaced by another gene) in order either to simplify the detection of the gene product or to distinguish it from similar or identical genes in the genome. The use of reporter genes requires a method of gene transfer — either transient or stable. Reporter gene technology can take very different shapes according to how and how much of the gene is tagged, and how the tag is detected or assayed. If one considers a schematic representation of an eukaryotic gene, with its cis-regulating regions, core promoter, transcript leader, translation initiation site, coding sequence, and 3′ control regions, a reporter tag can replace the gene to nearly any desired extent. Figure 1 shows that by replacing the gene to various extents by reporter sequences, gene fusions that can be used to analyze various levels of control of gene expression, as well as protein trafficking, can be generated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Teeri TH (1988) The study of gene regulation and protein targeting in plant cells using gene fusion techniques. PhD Thesis, University of Helsinki, Helsinki.

    Google Scholar 

  2. Nagy F, Boutry M, Hsu M-Y, Wong M, Chua N-H (1987) The 5′-proximal region of the wheat Cab-1 gene contains a 268-bp enhancer-like sequence for phytochrome response. EMBO J 6: 2537–2542.

    Google Scholar 

  3. Nagy F, Kay SA, and Chua N-H (1988) A circadian clock regulates transcription of the wheat Cab-1 gene. Genes Dev 2: 376–382.

    Article  Google Scholar 

  4. Simpson J, Schell J, Van Montagu M, Herrera-Estrella L (1986) Light-inducible and tissue-specific pea lhcp gene expression involves an upstream element combining enhancer-and silencer-like properties. Nature 323: 551–554.

    Article  Google Scholar 

  5. Mayfield SP, Taylor WC (1984) Carotenoid-deficient maize seedlings fail to accumulate light-harvesting chlo rophyll a/b binding protein (LHCP) mRNA. Eur J Biochem 144: 79–84.

    Article  Google Scholar 

  6. Newman TC, Ohme-Takagi M, Taylor CB, Green PJ (1993) DST sequences, highly conserved among plant SAUR genes, target reporter transcripts for rapid decay in tobacco. Plant Cell 5: 701–714.

    Google Scholar 

  7. Thompson JF, Hayes LS, Lloyd DB (1991) Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene 103: 171–177.

    Article  Google Scholar 

  8. Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234: 179–186.

    Article  Google Scholar 

  9. Huang S, Elliott RC, Liu P-S, Koduri RK, Weickmann JL, Lee J-H, Blair LC, Ghosh-Dastidar P, Bradshaw RA, Bryan KM, Einarson B, Kendall RL, Kolacz KH, Saito K (1987) Specificity of cotranslational amino-terminal processing of proteins in yeast. Biochemistry 26: 8242–8246.

    Article  Google Scholar 

  10. Jacob F, Ullman A, Monod J (1965) Délétions fusionnant l’opéron lactose et un opéron purine chez E. coli. J Mol Biol 13: 704

    Article  Google Scholar 

  11. Bassford P, Beckwith J, Berman M, Brickman E, Casadaban M, Guarente L, Saint-Girons I, Sarthy A, Schwartz M, Shuman H, Silhavy T (1978) Genetic fusions of the lac operon: A new approach to the study of biological processes. In: Miller JH, Reznikoff WS (eds) The Operon, pp. 245–261. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  12. Koncz C, De Greve H, André D, Deboeck F, Van Montagu M, Schell J (1983) The opine synthase genes carried by Ti plasmids contain all signals necessary for expression in plants. EMBO J 2: 1597–1603.

    Google Scholar 

  13. Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303: 209–213.

    Article  Google Scholar 

  14. Helmer G, Casadaban M, Bevan M, Kayes L, Chilton M-D (1984) A new chimeric gene as a marker for plant transformation: The expression of Escherichia coli β-galactosidase in sunflower and tobacco cells. Bio/technology 2: 520–527.

    Article  Google Scholar 

  15. Teeri TH, Lehväslaiho H, Franck M, Uotila J, Heino P, Palva ET, Van Montagu M, Herrera-Estrella L (1989) Gene fusions to lacZ reveal new expression patterns of chimeric genes in transgenic plants. EMBO J 8: 343–350.

    Google Scholar 

  16. Jefferson RA, Kavanagh TA, Bevan M (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3907–3910.

    Google Scholar 

  17. Ow DW, Wood KV, DeLuca M, De Wet JR, Helinski DR, Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234: 856–859.

    Article  Google Scholar 

  18. Koncz C, Olsson O, Langridge WHR, Schell J, Szalay AA (1987) Expression and assembly of functional bacterial luciferase in plants. Prot Natl Acad Sci USA 84: 131–135.

    Article  Google Scholar 

  19. Olsson O, Koncz C, Szalay AA (1988) The use of the luxA gene of the bacterial luciferase operon as a reporter gene. Mol Gen Genet 215: 1–9.

    Article  Google Scholar 

  20. Datla RS, Hammerlindl JK, Pelcher LE, Crosby WL, Selvaraj G (1991) A bifunctional fusion between /?-glucuronidase and neomycin phosphotransferase: A broad-spectrum marker enzyme for plants. Gene 101: 239–246.

    Article  Google Scholar 

  21. Suntio TM, Teeri TH (1993) Tagging of shoot-apex specific plant genes with a bifunctional reporter. Plant Mol Biol Reporter, in press.

    Google Scholar 

  22. Barnes WM (1990) Variable patterns of expression of luciferase in transgenic tobacco leaves. Proc Natl Acad Sci USA 87: 9183–9187.

    Article  Google Scholar 

  23. Martin T, Schmidt R, Altmann T, Frommer WB (1992) Non-destructive assay systems for detection of β-glucuronidase activity in higher plants. Plant Mol Biol Rep 10: 37–46.

    Article  Google Scholar 

  24. Matsumoto S, Takebe I, Machida Y (1988) Escherichia coli lacZ gene as a biochemical and histochemical marker in plant cells. Gene 66: 19–29.

    Article  Google Scholar 

  25. Ludwig SR, Bowen B, Beach L, Wessler S (1990) A regulatory gene as a novel visible marker for maize transformation. Science 247: 449–450.

    Article  Google Scholar 

  26. Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and Cl. Science 258: 1773–1775.

    Article  Google Scholar 

  27. Shaw WV (1975) Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Meth Enzymol 43: 737–755.

    Article  Google Scholar 

  28. Seed B, Sheen JY (1988) A simple phase-extraction assay for chloramphenicol acetyltransferase activity. Gene 67: 271–277.

    Article  Google Scholar 

  29. Shaw WV (1967) The enzymatic acetylation of chloramphenicol by extracts of R factor-resistant Escherichia coli. J Biol Chem 242: 687–693.

    Google Scholar 

  30. Shäffner AR, Sheen J (1991) Maize rbcS promoter activity depends on sequence elements not found in dicot rbcS promoters. Plant Cell 3: 997–1012.

    Google Scholar 

  31. Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coll J Mol Biol 138: 179–207.

    Article  Google Scholar 

  32. Goring DR, Rossant J, Clapoff S, Breitman ML, Tsui L-C (1987) In situ detection of β-galactosidase in lenses of transgenic mice with a gamma-crystallin/ZacZ gene. Science 235: 456–458.

    Article  Google Scholar 

  33. Hiromi Y, Kuroiwa A, Gehring W (1985) Control elements of the Drosophila segmentation gene fushi tarazu. Cell 43: 603–613.

    Article  Google Scholar 

  34. Brickman E, Silhavy TJ, Bassford PJ, Jr., Shuman HA, Beckwith JR (1979) Sites within gene lacZ of Escherichia coli for formation of active hybrid β-galactosidase molecules. J Bacteriol 139: 13–18.

    Google Scholar 

  35. Kalnins A, Otto K, Rüther U, Müller-Hill B (1983) Sequence of the lacZ gene of Escherichia coll EMBO J 2: 593–597.

    Google Scholar 

  36. Ullman A, Perrin D, Jacob F, Monod J (1965) Identification par complémentation in vitro en purification d’un segment peptidique de la β-galactosidase d’Escherichia coll J Mol Biol 12: 918–923.

    Article  Google Scholar 

  37. Casadaban MJ, Martinez-Arias A, Shapira SK, Chou J (1983) β-galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Meth Enzymol 100: 293–308.

    Article  Google Scholar 

  38. Mandecki W, Fowler AV, Zabin I (1981) Position of the lacZX90 mutation and hybridization between complete and incomplete β-galactosidase. J Bacteriol 147: 694–697.

    Google Scholar 

  39. Langley KE, Zabin I (1976) β-galactosidase α complementation: Properties of the complemented enzyme and mechanism of the complementation reaction. Biochemistry 15: 4866–4875.

    Article  Google Scholar 

  40. Ullman A, Perrin D (1970) Complementation in β-galactosidase. In: Beckwith JR, Zipser D (eds) The Lactose Operon, pp. 143–172. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  41. Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  42. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.

    Article  Google Scholar 

  43. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  Google Scholar 

  44. Farrell LB, Beachy RN (1990) Manipulation of β-glucuronidase for use as a reporter in vacuolar targeting studies. Plant Mol Biol 15: 821–825.

    Article  Google Scholar 

  45. Kosugi S, Ohashi Y, Nakajima K, Arai Y (1990) An improved assay for β-glucunoridase in transformed cells: Methanol almost completely supresses a putative endogenous β-glucuron-idase activity. Plant Sci 70: 133–140.

    Article  Google Scholar 

  46. Gould JH, Smith RH (1989) A non-destructive assay for GUS in the media of plant tissue cultures. Plant Mol Biol Rep 7: 209–216.

    Article  Google Scholar 

  47. Ziegler MM, Baldwin TO (1981) Biochemistry of bacterial bioluminescence. Curr Top Bioenerg 12: 65–113.

    Google Scholar 

  48. Hastings JW, Baldwin TO, Nicoli MZ (1978) Bacterial luciferase: Assay purification, and properties. Meth Enzymol 57: 135–152.

    Article  Google Scholar 

  49. Sugihara J, Baldwin T (1988) Effects of 3′ end deletions from the Vibrio harveyi luxB gene on luciferase subunit folding and enzyme assembly: Generation of temperature sensitive polypeptide folding mutants. Biochemistry 27: 2872–2880.

    Article  Google Scholar 

  50. Olsson O, Escher A, Sandberg G, Schell J, Koncz C, Szalay AA (1989) Engineering of monomeric bacterial luciferases by fusion of luxA and luxB genes of Vibrio harveyi. Gene 81: 335–347.

    Article  Google Scholar 

  51. Baldwin TO, Berends T, Bunch TA, Holzman TF, Rausch SK, Shamansky L, Treat ML, Ziegler MM (1984) Cloning of the luciferase structural genes from Vibrio harveyi and expression of bioluminescence in Escherichia coli Biochemistry 23: 3663–3667.

    Article  Google Scholar 

  52. Olsson O, Nilsson O, Koncz C (1990) Novel monomeric luciferase enzymes as tools to study plant gene regulation in vivo. J Biolumin Chemilumin 5: 79–87.

    Article  Google Scholar 

  53. Escher A, O’Kane DJ, Lee J, Szalay AA (1989) Bacterial luciferase ab fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature. Proc Natl Acad Sci USA 86: 6528–6532.

    Article  Google Scholar 

  54. Nilsson O, Aldén T, Sitbon F, Little CHA, Chalupa V, Sandberg G, Olsson O (1992) Spatial pattern of cauliflower mosaic virus 35S promoter-luciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and non-destructive imaging. Transgen Res 1: 209–220.

    Article  Google Scholar 

  55. Koncz C, Langridge WHR, Olsson O, Schell J, Szalay AA (1990) Bacterial and firefly luciferase genes in transgenic plants: Advantages and disadvantages of a reporter gene. Devel Genet 11: 224–232.

    Article  Google Scholar 

  56. Langridge WHR, Fitzgerald KJ, Koncz C, Schell J, Szalay AA (1989) Dual promotor of Agrobacterium tumefadens mannopine synthase genes is regulated by plant growth hormones. Proc Natl Acad Sci USA 86: 3219–3223.

    Article  Google Scholar 

  57. Wood KV (1991) In: Stanley P, Cricka L (eds) Recent Advances and Prospects for Use of Beetle Luciferase as Genetic Reporters, Bioluminescence & Chemiluminescence: Current Status, p. 543. Chichester: John Wiley & Sons, Ltd.

    Google Scholar 

  58. Promega Technical Bulletin No. 101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Herrera-Estrella, L., León, P., Olsson, O., Teeri, H.T. (1994). Reporter genes for plants. In: Gelvin, S.B., Schilperoort, R.A. (eds) Plant Molecular Biology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0511-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0511-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7654-5

  • Online ISBN: 978-94-011-0511-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics