Skip to main content

Ganglion cell circuits in primate fovea

  • Chapter
Colour Vision Deficiencies XII

Part of the book series: Documenta Ophthalmologica Proceedings Series ((DOPS,volume 57))

Abstract

In the standard view all information from the fovea is relayed via only two types of ganglion cell, P (midget) and M (parasol) thought to form respectively 90–95% and 5–10% of the ganglion cell population. We characterized all 157 ganglion cells in a small patch of macaque fovea using electron micrographs of serial sections. One hundred fifteen (73%) were midget ganglion cells and were of two types, one with 28 ± 4 bipolar synapses and the other with 47 ± 3 synapses. Forty-two (27%) were non-midget ganglion cells. Most had dendrites restricted to either sublamina a or sublamina b of the inner plexiform layer, but one quarter had dendrites in both. These cells were of two types, one with input in sublamina b from blue cone bipolar cells and the other with only diffuse bipolar cell input. The ganglion cells with dendrites in either sublamina a or sublamina b were of at least one type with the possibility of more. We conclude that non-midget ganglion cells are numerous and provide additional parallel arrays to brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boycott, B.B. and Wässle, H. (1991). Morphological classification of bipolar cells of the primate retina. Euro. J. Neurosci. 3: 1069–1088.

    Article  Google Scholar 

  • Buchsbaum, G. Calkins, D. and Sterling, P. (1993). Patchy mosaic of L and M cones enables efficient tradeoff between spatial and color vision. Ann. Meet. Opt. Soc. Amer. (Abstr.).

    Google Scholar 

  • Calkins, D.J., Schein, S.J., Tsukamoto, Y. and Sterling, P. (1994). M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature 371: 70–72.

    Article  PubMed  CAS  Google Scholar 

  • Dacey, D.M. and Lee, B.B. (1994). The “blue-on” opponent pathway in private retina originates from a distinct bistsatified ganglion cell type. Nature 367: 731–735.

    Article  PubMed  CAS  Google Scholar 

  • Dacey, D.M. (1993). The mosaic of midget ganglion cells in the human retina. J. Neurosci. 13: 5334–5355.

    PubMed  CAS  Google Scholar 

  • Dacey, D.M. and Brace, S. (1992). A coupled network for parasol but not midget ganglion cells in the primate retina. Vis. Neurosci. 9: 279–290.

    Article  PubMed  CAS  Google Scholar 

  • De Monasterio, F.M. and Gouras, P. (1975). Functional properties of ganglion cells in the rhesus monkey retina. J. Physiol. 251: 167–197.

    PubMed  Google Scholar 

  • Derrington, A.M. and Lennie, P. (1984). Spatial and temporal sensitivities of neurones in lateral geniculate nucleus of macaque. J. Physiol. 357: 219–240.

    PubMed  CAS  Google Scholar 

  • Grünert, U., Greferath, U., Boycott, B.B. and Wässle, H. (1993). Parasol (Pa ganglion-cells of the primate fovea: immunocytochemical staining with antibodies against GABAA-receptors. Vision Res. 33: 1–14.

    Article  PubMed  Google Scholar 

  • Kaplan, E., Lee, B. and Shapley, R. (1990). New views of primate retinal function. In: Osborne, N. and Chader, J. (eds.), Progress in Retinal Research, 0th ed.: 273–336, Pergamon Press, New York.

    Google Scholar 

  • Kolb, H. (1970). Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. Philos. Trans. R. Soc. Lond. B 258: 261–283.

    Article  CAS  Google Scholar 

  • Kouyama, N. and Marshak, D.W. (1992). Bipolar cells specific for blue cones in the macaque retina. J. Neurosci. 12: 1233–1252.

    PubMed  CAS  Google Scholar 

  • Lennie, P., Haake, P.W. and Williams, D.R. (1991). The design of chromatically opponent receptive fields. In: Landy, M.S. and Movshon, J.A. (eds.), Computational Models of Visual Processing: 71–82, MIT Press, Cambridge.

    Google Scholar 

  • Mariani, A.P. (1984). Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature 308: 184–186.

    Article  PubMed  CAS  Google Scholar 

  • Meriga, W.H. and Katz, L.M. (1990). Spatial resolution across the macaque retina. Vision Res. 30: 985–991.

    Article  Google Scholar 

  • Mollon, J.D. and Bowmaker, J.K. (1992). The spatial arrangement of cones in primate fovea. Nature 360: 677–670.

    Article  PubMed  CAS  Google Scholar 

  • Mullen, K.T. (1985). The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings. J. Physiol. 359: 381–400.

    PubMed  CAS  Google Scholar 

  • Nagle, M.G. and Osorio, D. (1993). The tuning of human photopigments may minimize red-green chromatic signals in natural conditions. Proc. R. Soc. Lond. B 252: 209–213.

    Article  CAS  Google Scholar 

  • Nelson, R., Famiglietti, E.V. and Kolb, H. (1978). Intracellular staining reveals different levels of stratification for on-center and off-center ganglion cells in the cat retina. J. Neurophysiol. 41: 472–483.

    PubMed  CAS  Google Scholar 

  • Osorio, D. and Bossomaier, T.R.J. (1992). Human cone-pigment sensitivities and the reflectances of natural surfaces. Biol. Cybern. 67: 217–222.

    Article  PubMed  CAS  Google Scholar 

  • Pelli, D.G. (1990). The quantum efficiency of vision. In: Blakemore, C. (ed.), Vision: Coding and Efficiency: 3–24, Cambridge University Press, Cambridge.

    Google Scholar 

  • Pelli, D.G. (1991). Noise in the visual system may be early. In: Landy, M.S. and Movshon, J.A. (eds.), Computational Models of Visual Processing: 147–151, MIT Press, Cambridge.

    Google Scholar 

  • Perry, V.H., Oehler, R. and Cowey, A. (1984). Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neurosci. 12: 1101–1123.

    Article  CAS  Google Scholar 

  • Polyak, S.L. (1941). The Retina. University of Chicago Press, Chicago.

    Google Scholar 

  • Reid, R.C. and Shapley, R.M. (1992). Spatial structure of cone inputs to receptive fields in primate geniculate nucleus. Nature 356: 716–718.

    Article  PubMed  CAS  Google Scholar 

  • Rodieck, R.W. (1991). Which cells code for color? In: Valberg, A. and Lee, B.B. (eds.), From Pigments to Perception: 83–93, Plenum Press, New York.

    Chapter  Google Scholar 

  • Sekiguchi, N., Williams, D.R. and Brainard, D.H. (1993). Aberration-free measurements of isoluminant contrast sensitivity. J. Opt. Soc. Amer. A 10: 2105–2117.

    Article  CAS  Google Scholar 

  • Sekiguchi, N. and Williams, D.R. (1993). Efficiency for detecting isoluminant and isochromatic interference fringes. J. Opt. Soc. Amer. A 10: 2118–2133.

    Article  CAS  Google Scholar 

  • Silveira, L.C.L. and Perry, V.H. (1991). The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina. Neurosci. 40: 217–237.

    Article  CAS  Google Scholar 

  • Smith, R.G. (1987). Montage: a system for three-dimensional reconstruction by personal computer. J. Neurosci. Methods 21: 55–69.

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto, Y., Masarachi, P., Schein, S.J. and Sterling, P. (1992). Gap junctions between the pedicles of macaque foveal cones. Vision Res. 32: 1809–1815.

    Article  PubMed  CAS  Google Scholar 

  • Van Essen, D.C. and Anderson, C.H. (1990). Information processing strategies and pathways in the primate retina and visual cortex. In: An Introduction to Neural and Electronic Networks: 43–72, Academic Press, Inc., New York.

    Google Scholar 

  • Wässle, H., Boycott, B.B. and Röhrenbeck, J. (1989). Horizontal cells in the monkey retina: cone connections and dendritic network. Euro. J. Neurosci. 1: 421–435.

    Article  Google Scholar 

  • Wiesel, T.B. and Hubel, D.H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29: 1115–1156.

    PubMed  CAS  Google Scholar 

  • Williams, D.R., Sekiguchi, N. Haake, P.W., Brainard, D. and Packer, O. (1991). The cost of trichromacy for spatial vision. In: Lee, B. and Valberg, A. (eds.), From Pigments to Perception: 11–22, Plenum Press, New York.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. Drum A. J. Adams C. R. Cavonius S. J. Dain G. Haegerstrom-Portnoy K. Kitahara K. Knoblauch A. Kurtenbach B. B. Lee J. Mollon J. D. Moreland J. Pokorny L. T. Sharpe H. A. Sperling W. H. Swanson E. Zrenner

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Calkins, D.J., Schein, S.J., Tsukamoto, Y., Sterling, P. (1995). Ganglion cell circuits in primate fovea. In: Drum, B., et al. Colour Vision Deficiencies XII. Documenta Ophthalmologica Proceedings Series, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0507-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0507-1_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4226-0

  • Online ISBN: 978-94-011-0507-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics