Plant Hormones pp 774-796 | Cite as

Hormones in Tissue Culture and Micropropagation

  • Abraham D. Krikorian


Identification and characterization of the role of hormones in plant growth regulation has been closely linked to studies on development in vitro. Aseptic culture techniques, and the use of hormones in nutrient media that usually goes with it, are now more widely used than ever in basic and applied research (39). Several categories of hormone are recognized, but search for new growth regulatory molecules continues and inevitably new categories will be erected. In all this, study of the identity, effects and mechanism of action of hormones will rely heavily on in vitro techniques.


Somatic Embryo Somatic Embryogenesis Plant Tissue Culture Embryogenic Cell Coconut Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, J., Nakashima, H., Mitsui, K., Mikami, T., Shimamoto, Y. (1991) Tissue culture response of Beta germplasm: callus induction and plant regeneration. Plant Cell, Tissue and Organ Culture 27, 123–127.CrossRefGoogle Scholar
  2. 2.
    Ammirato, P.V. (1989) Recent progress in somatic embryogenesis. Intl. Assoc. Plant Tiss. Culture Newsletter 57, 2–16.Google Scholar
  3. 3.
    Arditti, J., Ernst, R. (1993) Micropropagation of Orchids. Wiley, New York.Google Scholar
  4. 4.
    Bhojwani, S.S. (ed.) (1990) Plant tissue culture: Applications and limitations. Elsevier, Amsterdam.Google Scholar
  5. 5.
    Burrows, W.J., Leworthy, D.P. (1976) Metabolism of N, N’-diphenylurea by cytokinindependent tobacco callus: Identification of the glucoside. Biochem. Biophys. Res. Comm. 70, 1109–1114.Google Scholar
  6. 6.
    Carman, J. (1990) Embryogenic cells in plant tissue cultures: Occurrence and behavior. In Vitro Cell Develop. Biol. 26, 746–753.Google Scholar
  7. 7.
    Charlwood, B.V., Rhodes, M. (eds.) (1990) Secondary products from plant tissue culture. Clarendon Press, Oxford.Google Scholar
  8. 8.
    Chasm, R. (1991) Searching for signals. Plant Cell 3, 848–850.Google Scholar
  9. 9.
    Clowes, F.A.L., Macdonald, M.M. (1987) Cell cycling and the fate of potato buds. Ann. Bot. 59, 141–148.Google Scholar
  10. 10.
    Davis, T.D., Curry, E.A. (1991) Chemical regulation of vegetative growth. Critical Rev. Plant Sci. 10, 151–188.CrossRefGoogle Scholar
  11. 11.
    Davis, T.D., Haissig, B., Sankhla, N. (eds.) (1988) Adventitious root formation in cuttings. Dioscorides Press, Portland.Google Scholar
  12. 12.
    De Jong, A.J., Cordewener, J., Lo Schiavo, F., Terzi, M., Vanderkerckhove, J., Van Kammen, A., De Vries, S.C. (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4, 425–433.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    De Vries, S.C., Booij, H., Janssens, R., Vogels, R., Saris, L., LoSchiavo, F., Terzi, M., van Kammen, A. (1988) Carrot somatic embryogenesis depends on the phytohormone-controlled presence of correctly glycosylated extracellular proteins. Genes Develop. 2, 462–476.CrossRefGoogle Scholar
  14. 14.
    Einspahr, K.J., Thompson, G.A. (1990) Transmembrane signaling via phosphatidylinositol 4,5-bisphosphate hydrolysis in plants. Plant Physiol. 93, 361–366.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Fellman, C.D., Read, P.E., Hosier, M.A. (1987) Effects of thidiazuron and CPPU on meristem formation and shoot proliferation. HortScience 22, 1197–1200.Google Scholar
  16. 16.
    Flores, H.E., Arteca, R.N., Shannon, J.C. (1990) Polyamines and ethylene: biochemistry, physiology, and interactions. Amer. Soc. Plant Physiol. Rockville, MD.Google Scholar
  17. 17.
    Frenkel, C., Haard, N.F. (1973) Initiation of ripening in Bartlett pear with an anti-auxin a(p-chlorophenoxy)isobutyric acid. Plant Physiol. 52, 380–384.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Fry, S.C., Street, H.E. (1980) Gibberellin-sensitive cultures. Plant Physiol. 65, 472–477.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Gavish, H., Vardi, A., Fluhr, R. (1991) Extracellular proteins and early embryo development in Citrus nucellar cell cultures. Physiol. Plantarum 82, 606–616.CrossRefGoogle Scholar
  20. 20.
    George, L., Eapen, S., Rao, P.S. (1989) High frequency somatic embryogenesis and plant regeneration from immature inflorescence cultures of two Indian cultivars of sorghum (Sorghum bicolor Moench.). Proc. Indian Acad. Sci. (Plant Sci.) 99, 405–410.Google Scholar
  21. 21.
    Goh, H.K.-L., Rao, A.N., Loh, C.-S. (1990) Direct shoot bud formation from leaf explants of seedlings of seedlings and mature mangosteen (Garcinia mangostana) L. trees. Plant Science 68, 113–121.CrossRefGoogle Scholar
  22. 22.
    Goldberg, R.B., Barker, S.J., Perez-Grau, L. (1989) Regulation of gene expression during plant embryogenesis. Cell 56, 149–160.PubMedCrossRefGoogle Scholar
  23. 23.
    Gray, DJ.., Conger, B.V. (1985) Influence of dicamba and casein hydrolysate on somatic embryo number and culture quality in cell suspensions of Dactylis glomerata (Gramineae). Plant Cell, Tissue Organ Cult. 4, 123–133.CrossRefGoogle Scholar
  24. 24.
    Hagen, S.R., Muneta, P. Augustin, J., LeTourneau, D. (1991) Stability and utilization of picloram, vitamins, and sucrose in a tissue culture medium. Plant Cell, Tissue Organ Cult. 25, 45–48.CrossRefGoogle Scholar
  25. 25.
    Han, H., Yang, H. (1986) Haploids of higher plants in vitro. China Academic Publishers, Beijing; Springer-Verlag, Berlin.Google Scholar
  26. 26.
    Jackson, M.B., Mantell, S.H., Blake, J. (eds.) (1987) Advances in the chemical manipulation of plant tissue cultures. British Plant Growth Regulator Group Monograph No. 16.Google Scholar
  27. 27.
    Jansen, M.A.K., Booij, H., Schel, J.H., de Vries, S.C. (1990) Calcium increases the yield of somatic embryos in carrot embryogenic suspension cultures. Plant Cell Rep. 9, 221–223.Google Scholar
  28. 28.
    Kado, C.I. (1991) Molecular mechanisms of crown gall tumorigenesis. Crit. Rev. Plant Sci. 10, 1–31.CrossRefGoogle Scholar
  29. 29.
    Kiyousue, T., Takano, K., Kamada, H., Harada, H. (1990) Induction of somatic embryogenesis in carrot by heavy metal ions. Can. J. Bot. 68, 2301–2303.CrossRefGoogle Scholar
  30. 30.
    Kochba, J., Spiegel-Roy, P. (1977) The effects of auxins, cytokinins and inhibitors on embryogenesis in habituated ovular callus of the “Shamouti” orange (Citrus sinensis). Z. Pflanzenphysiol. 81, 283–288.CrossRefGoogle Scholar
  31. 31.
    Krikorian, A.D. (1982) Cloning higher plants from aseptically cultured tissues and cells. Biol. Rev. 57, 151–218.CrossRefGoogle Scholar
  32. 32.
    Krikorian, A.D. (1988) Plant tissue culture: Perceptions and realities. Proc. Indian Acad. Sci. (Plant Sci.) 98, 425–464.Google Scholar
  33. 33.
    Krikorian, A.D. (1989) The context and strategies for tissue culture of date, African oil and coconut palms. In: Applications of biotechnology in forestry and horticulture, pp. 119–144, Dhawan, V., ed. Plenum Press, New York.CrossRefGoogle Scholar
  34. 34.
    Krikorian, A.D. (1994a) In vitro methods for plantation crops. In: Plant tissue culture--theory and applications, Vasil, I.K., Thorpe, T.A., eds. Kluwer Academic Publishers, Dordrecht.Google Scholar
  35. 35.
    Krikorian, A.D. (1994b) In vitro methods for root and tuber crops. In: Plant tissue culture--theory and applications. Vasil, I.K., Thorpe, T.A., eds. Kluwer Academic Publishers, Dordrecht.Google Scholar
  36. 36.
    Krikorian, A.D., Smith, D.L. (1992) Somatic embryogenesis in carrot (Daucus carota). In: Plant tissue culture manual: fundamentals and applications. Lindsey, K., ed., pp. PTCM-A9 1–32. Kluwer Academic Publishers, Dordrecht.Google Scholar
  37. 37.
    Kysely, W., Jacobsen, 11.-J. (1990) Somatic embryogenesis from pea embryos and shoot apices. Plant Cell, Tissue Organ Cult. 20, 7–14.CrossRefGoogle Scholar
  38. 38.
    Lincoln, C.,Turner, J., Estelle, M. (1992) Hormone-resistant mutants of Arabidopsis have an attenuated response to Agrobacterium strains. Plant Physiol. 98, 979–983.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Lindsey, K. (1992) Plant tissue culture manual. Kluwer Academic Publishers, Dordrecht.Google Scholar
  40. 40.
    Meijer, E.G.M. (1989) Developmental aspects of ethylene biosynthesis during somatic embryogenesis in tissue cultures of Medicago sativa. J. Exp. Bot. 40, 479–484.CrossRefGoogle Scholar
  41. 41.
    Meins, F. (1989) A biochemical switch model for cell-heritable variation in cytokinin requirement. In: The molecular basis of plant development, pp. 13–24, Goldberg, R., ed. Alan R. Liss, New York.Google Scholar
  42. 42.
    Messens, E., Dekeyser, R., Stachel, S.E. (1990) A nontransformable Triticum monococcum monocotyledonous culture produces the potent Agrobacterium vir-inducing compound ethyl ferulate. Proc. Natl. Acad. Sci. 87, 4368–4372.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Murray, D.R. (1988) Nutrition of the angiosperm embryo. John Wiley & Sons, New York.Google Scholar
  44. 44.
    Newcomb, W., Wetherell, D.F. (1970) The effects of 2,4,6-trichlorophenoxyacetic acid on embryogenesis in wild carrot tissue cultures. Bot. Gaz. 131, 242–245.CrossRefGoogle Scholar
  45. 45.
    Nissen, P. (1988) Dose responses of gibberellins. Physiol. Plant. 72, 197–203.Google Scholar
  46. 46.
    Orr, J.D., Lynn, D.G. (1992) Biosynthesis of dehydroconiferyl alcohol glucosides: implications for the control of tobacco cell growth. Plant Physiol. 98, 343–352.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Palme, K., Hesse, T., Campos, N., Garbers, C., Yanovsky, M., Schell, J. (1992) Molecular analysis of an auxin binding protein gene located on chromosome 4 of Arabidopsis. Plant Cell 4, 193–201.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Payne, G.F., Bringi, V., Prince, C., Shuler, M.L. (1991) Plant cell and tissue culture in liquid systems. Hanser Publishers, Munich.Google Scholar
  49. 49.
    Peschke, V.N., Phillips, R.L. (1992) Genetic implications of somaclonal variation in plants. Adv. Genetics 30, 41–75.CrossRefGoogle Scholar
  50. 50.
    Pollard, J.W., Walker, J.M. (eds.) (1990) Plant cell and tissue culture. Methods in molecular biology Vol. 6. Humana Press, Clifton.Google Scholar
  51. 51.
    Protacio, C.M., Dai, Y.-r., Lewis, E.F., Flores, H.E. (1992) Growth stimulation by catecholamines in plant tissue/organ culture. Plant Physiol. 98, 89–96.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Puite, K.J. (ed.) (1988) Progress in plant protoplast research: Proceedings of the 7th International Protoplast Symposium, Wageningen, Netherlands, Dec. 6–11,1987. Kluwer Academic Publishers, Dordrecht.Google Scholar
  53. 53.
    Purse, J.G., Lee, T.S., Pryce, R.J. (1985) Stimulation of soybean callus growth by Slathyrine. Phytochemistry 24, 897–900.CrossRefGoogle Scholar
  54. 54.
    Raghavan, V. (1986) Embryogenesis in angiosperms: A developmental and experimental study. Cambridge University Press, Cambridge.Google Scholar
  55. 55.
    Redenbaugh, K. (1992) Synseeds. CRC Press, Boca RatonGoogle Scholar
  56. 56.
    Ryan, C.A., Farmer, E.E. (1991) Oligosaccharides signals in plants: A current assessment. Ann. Rev. Plant Physiol. Mol. Biol. 42, 651–674.CrossRefGoogle Scholar
  57. 57.
    Samonte, J.L., Mendoza, E.M.T., Ilag, L.L., De La Cruz, N.B., Ramirez, D.A. (1989) Galactomannan degrading enzymes in maturing normal and makapuno and germinating normal coconut endosperm. Phytochem. 28, 2269–2273.CrossRefGoogle Scholar
  58. 58.
    Schiavone, F.M., Cooke, T.J. (1987) Unusual patterns of somatic embryogenesis in the domesticated carrot: developmental effects of exogenous auxins and auxin transport inhibitors. Cell Differentiation 21, 53–62.PubMedCrossRefGoogle Scholar
  59. 59.
    Showalter, A.M. (1993) Structure and function of plant cell wall proteins. Plant Cell 5, 9–23.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Smigocki, A., Owens, L. (1989) Cytokinin-to-auxin ratios and morphology of shoots and tissues transformed by a chimeric isopentenyl transferase gene. Plant Physiol. 91, 808–811.Google Scholar
  61. 61.
    Smith, D.L., Krikorian, A.D. (1990). Low external pH replaces 2,4-D in maintaining and multiplying 2,4-D initiated embryogenic cells of carrot. Physiol. Plant. 80, 329–336.Google Scholar
  62. 62.
    Smith, D.L., Krikorian, A. (1991) Growth and maintenance of an embryogenic cell culture of daylily (Hemerocallis) on hormone-free medium. Ann. Bot. 67, 443–449.PubMedGoogle Scholar
  63. 63.
    Smith, D.L., Kelly, K., Krikorian, A.D. (1989). Ethylene-associated phase change from juvenile to mature phenotype of daylily (Hemerocallis) in vitro. Physiol. Plant. 76, 466–473.Google Scholar
  64. 64.
    Thomas, H., Grierson, D. (Eds.) (1987) Developmental mutants in higher plants. Soc. Exp. Biol. Seminar Series 32. Cambridge University Press, Cambridge.Google Scholar
  65. 65.
    Tiburcio, A.F., Kaur-Sawhney, R., Galston, A.W. (1990) Polyamine metabolism. Biochem. Plants 16, 283–325.Google Scholar
  66. 66.
    Tsai, D-S., Arteca, R.N. (1984) Inhibition of IAA-induced ethylene production in etiolated mung bean hypocotyl segments by 2,3,5-triiodobenzoic acid and 2-(pchlorophenoxy)-2-methyl propionic acid. Physiol. Plant. 62, 448–452.Google Scholar
  67. 67.
    Van Engelen, F.A., De Vries, S.C. (1992) Extracellular proteins in plant embryogenesis. Trends in Genetics 8, 66–70.PubMedCrossRefGoogle Scholar
  68. 68.
    Vasil, I.K., Thorpe, T.A. (eds.) (1994) Plant tissue culture--theory and applications. Kluwer Academic Publishers, Dordrecht.Google Scholar
  69. 69.
    Wang, P.J. (1990) Regeneration of virus-free plants through tissue culture. Adv. Biochem. Engin. 18, 61–99.Google Scholar
  70. 70.
    Wickson, M., Thimann. K.V. (1958) The antagonism of auxin and kinetin on apical dominance. Physiol Plant. 11, 62–74.CrossRefGoogle Scholar
  71. 71.
    Zimmerman, R.H., Debergh, P. (eds.) (1990) Micropropagation. Kluwer Scientific Publishers, Dordrecht.Google Scholar
  72. 72.
    Ziv, M., Ariel, T. (1991) Bud proliferation and plant regeneration in liquid-cultured Philodendron treated with ancymidol and paclobutrazol. J. Plant Growth Regul. 10, 53–57.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Abraham D. Krikorian
    • 1
  1. 1.Department of Biochemistry and Cell Biology, Division of Biological SciencesState University of New York at Stony BrookStony BrookUSA

Personalised recommendations