Skip to main content

Large Scale Structural Optimization

  • Chapter
Book cover Advances in Structural Optimization

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 25))

  • 415 Accesses

Abstract

The purpose here is to describe efficient methods for large scale structural optimization. A brief review of historical developments shows that techniques are now available to make the structural optimization task quite efficient and reliable. Proper formulation requires that different element types, design variables and responses be treated differently Also, because a large number of nonlinear constraints are involved, these must be efficiently handled. Examples are offered to demonstrate the range of design tasks that can now be addressed and the design efficiencies that can be expected. Using the latest methods, large scale structural optimization is possible for a wide range of practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vanderplaats, G. N., “Approximation Concepts for Structural Design Optimization,” S. Kodiyalam and M. Saxena, editors, Geometry and Optimization Techniques for Structural Design, Computational Mechanics Publications, Elsevier Applied Science, Southampton, 1994.

    Google Scholar 

  2. Vanderplaats, G.N., Numerical Optimization Techniques for Engineering Design: with Applications, McGraw-Hill, 1984.

    MATH  Google Scholar 

  3. Schmit, L.A., “Structural Design by Systematic Synthesis,” Proc. 2nd Conference on Electronic Computation, ASCE, New York, 1960, pp. 105–122.

    Google Scholar 

  4. Fox, R. L., Constraint Surface Normals for Structural Synthesis Techniques,7 AIAA Journal, Vol. 3(8), 1965, pp. 1517–1518.

    Article  Google Scholar 

  5. Yang, R.J. and Botkin M.E., “The Relationship Between the Variational Approach and Implicit Differentiation Approach to Shape Design Sensitivities,” Proc. 26th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, Orlando, FL, 1985.

    Google Scholar 

  6. Vanderplaats, G.N. and Miura, H., “Trends in Structural Optimization: Some Considerations in Using Standard Finite Element Software, ”Proc. 6th Vehicle Structural Mechanics Conference, Detroit, MI, April 1986.

    Google Scholar 

  7. Haug, E.J., Choi, K.K. and Komkov, V., Design Sensitivity Analysis of Structural Systems, Academic Press, 1984.

    Google Scholar 

  8. Starnes, J.R. Jr. and Haftka, R.T., “Preliminary Design of Composite Wings for Buckling, Stress and Displacement Constraints,” Journal of Aircraft, Vol. 16, Aug. 1979,pp. 564–570.

    Article  Google Scholar 

  9. Fleury, C. and Braibant, V, “Structural Optimization: A New Dual Method using Mixed Variables,” Int. J. of Numerical Methods in Engineering, Vol. 23, No. 3, 1986, pp. 409–429.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Schmit, L. A., and Farshi, B., “Some Approximation Concepts for Structural Synthesis,” AIAA J., Vol. 12, No. 5, 1974, pp. 692–699.

    Article  ADS  Google Scholar 

  11. Schmit, L.A., and Miura, H., “Approximation Concepts for Efficient Structural Synthesis,” NASA CR-2552,1976.

    Google Scholar 

  12. Bloebaum, C. L., “Variable Move Limit Strategy for Efficient Optimization,” Proceedings of the AIAA/ASME/ASCE/AHS/ASC 32nd Structures, Structural Dynamics and Materials Conference, Baltimore, Maryland, AIAA, Washington, D. C, pp. 431–437, 1991.

    Google Scholar 

  13. Thomas, H. T., Vanderplaats, G. N. and Shyy, Y-K, “A Study of Move Limit Adjustment Strategies in the Approximation Concepts Approach to Structural Synthesis,” Proc. Fourth AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland, OH, Sept. 21–23,1992, pp. 507–512.

    Google Scholar 

  14. Salajegheh, E. and Vanderplaats, G.N., “An Efficient Approximation Method for Structural Synthesis with Reference to Space Structures,” International Journal of Space Structures, Vol 2, No 3, 1986/87, pp. 165–175.

    Google Scholar 

  15. Vanderplaats, G. N. and Salajegheh, E., “A New Approximation Method for Stress Constraints in Structural Synthesis,” AIAA J., Vol. 27, No. 3, March 1989, pp. 352–358.

    Article  ADS  Google Scholar 

  16. Vanderplaats, G. N. and Thomas, H. L., “An Improved Approximation for Stress Constraints in Plate Structures,” Structural Optimization, Vol. 6, No. 1,1993, pp. 1–6.

    Article  Google Scholar 

  17. Canfield, R. A., “An Approximation Function for Frequency Constraints in Structural Optimization,” Proc. of the 2nd NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, Hampton, VA, Sept. 28–30, 1988, pp. 937–953.

    Google Scholar 

  18. Yoshida, N. and Vanderplaats, G. N., “Structural Optimization Using Beam Elements,” AIAA Journal, Vol. 26, No. 4, pp. 454–462, 1988.

    Article  ADS  MATH  Google Scholar 

  19. Vanderplaats, G. N. and Salajegheh, E., “An Efficient Approximation Technique for Frequency Constraints in Frame Optimization,” International Journal for Numerical Methods, Vol. 26, pp. 1057–1069, 1988.

    Article  ADS  MATH  Google Scholar 

  20. Pickett, R. M., Jr., Rubinstein, M. F. and Nelson, R. B., “Automated Structural Synthesis Using a Reduced Number of Design Coordinates,” AIAA Journal, Vol. 11, no. 4, 1973, pp. 489–494.

    Article  ADS  Google Scholar 

  21. Vanderplaats, G.N., Miura, H., Cai, H.D. and Hansen, S.R., “Structural Optimization using Synthetic Functions,” Proceedings, 1989 AIAA/ASME/ ASCE/AHS 30th Structures, Structural Dynamics and Materials Conference, AIAA, Washington, DC, 1989.

    Google Scholar 

  22. Hansen, S.R. and Vanderplaats, G.N., “An Approximation Method for Configuration Optimization of Trusses,” AIAA Journal, Vol 28, No. 1, Jan. 1990, pp. 161–172.

    Article  ADS  Google Scholar 

  23. Imai, K., Configuration Optimization of Trusses by the Multiplier Method, Report No. UCLA-ENG-7842, Mechanics and Structures Department, School of Engineering and Applied Science, University of California, Los Angeles, 1978.

    Google Scholar 

  24. Vanderplaats, G.N., Miura, H. and Chargin, M., “Large Scale Structural Synthesis,” J. Finite Elements in Analysis and Design, Vol. 1, No. 3, June 1985, pp. 117–130.

    Article  Google Scholar 

  25. MSC/NASTRAN Version 63 User’s Manual, The MacNeal-Schwendler Corporation, Los Angeles, CA 1983.

    Google Scholar 

  26. Kodiyalam, S., Vanderplaats, G. N., Miura, H., Nagendra, G. K. and Wallerstein, D. V, “Structural Shape Optimization with MSC/NASTRAN,” J. Computers and Structures, (In Press).

    Google Scholar 

  27. GENESIS User’s Manual, VMA Engineering, Santa Barbara, CA, June 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vanderplaats, G.N. (1995). Large Scale Structural Optimization. In: Herskovits, J. (eds) Advances in Structural Optimization. Solid Mechanics and Its Applications, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0453-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0453-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4203-1

  • Online ISBN: 978-94-011-0453-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics