Skip to main content

Is the 5-HT2-Receptor a Target for Antipsychotic Drug Action? PET Studies on Dopamine (D2 and Serotonin (5-HT2) Receptor Occupancy in Patients and Healthy Subjects

  • Chapter
Book cover PET for Drug Development and Evaluation

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 26))

  • 109 Accesses

Abstract

Several types of neuroreceptors are of interest with respect to antipsychotic activity, in particular the D2 dopamine, D1 dopamine and 5-HT2 receptors. Among currently prescribed antipsychotic drugs, some have an affinity for a broad range of neuroreceptors, while others are more selective for the D2 receptor [1]. The most widely accepted hypothesis of neuroleptic drug action is that antipsychotic effects are mediated by blockade of the dopamine receptors [2–6]. This hypothesis has been supported by consistent findings of high D2 receptor occupancy in PET studies performed in patients treated with antipsychotic drugs [7–9]. We have recently shown a statistically significant relation between antipsychotic effect and D2 receptor occupancy in a controlled clinical study, using raclopride as an antipsychotic [10]. We have also shown that the risk of extrapyramidal side-effects was significantly increased in patients with occupancy above 80% [11]. On the basis of these findings we have suggested that for classical antipsychotics there is a threshold for antipsychotic effect at about 70% D2 receptor occupancy, and a distinct threshold for EPS at about 80% (figure 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hyttel J, Larsen J, Christensen A, Arnt J. Receptor-binding profiles of neuroleptics. In: Casey DE, Chase TN, Christensen AV, Gerlach J, ed. Dyskinesia. Research and treatment. New York: Springer-Verlag, 1985: 9–18.

    Chapter  Google Scholar 

  2. Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 1963;20:140–144.

    Article  CAS  Google Scholar 

  3. van Rossum J. The significance of dopamine receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther 1966; 160(2):492-494.

    PubMed  Google Scholar 

  4. Seeman P, Lee T, Chau-Wong M, Wong K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 1976;261:717–719.

    Article  PubMed  CAS  Google Scholar 

  5. Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976;192:481–483.

    Article  PubMed  CAS  Google Scholar 

  6. Peroutka SJ, Snyder SH. Relationship of neuroleptic drug effects at brain dopamine, serotonin, α-adrenergic, and histamine receptors to clinical potency. American Journal of Psychiatry 1980;137(12):1518–1522.

    PubMed  CAS  Google Scholar 

  7. Farde L, Hall H, Ehrin E, Sedvall G. Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 1986;231:258–261.

    Article  PubMed  CAS  Google Scholar 

  8. Smith M, Wolf A, Brodie J, et al. Serial [18F]N-Methylspiroperidol PET studies to measure changes in antipsychotic drug D-2 receptor occupancy in schizophrenic patients. Biol Psychiatry 1988;23(7):653–663.

    Article  PubMed  CAS  Google Scholar 

  9. Baron JC, Martinot JL, Cambon H, et al. Striatal dopamine receptor occupancy during and following withdrawal from neuroleptic treatment: correlative evaluation by positron emission tomography and plasma prolactin levels. Psychopharmacology 1989;99(4):463–472.

    Article  PubMed  CAS  Google Scholar 

  10. Nordström A-L, Farde L, Wiesel F-A, et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects - a double blind PET study of schizophrenic patients. Biol Psychiatry 1993;33:227–235.

    Article  PubMed  Google Scholar 

  11. Farde L, Nordström A-L, Wiesel F-A, Pauli S, Halldin C, Sedvall G. Positron emission tomographic analysis of central D1- and D2-dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine – relation to extrapyramidal side effects. Archives of General Psychiatry 1992;49:538–544.

    Article  PubMed  CAS  Google Scholar 

  12. Kane J, Honigfeld G, Singer J, Meltzer H. Clozapine for the treatment-resistant schizophrenic. Archives of General Psychiatry 1988;45:789–796.

    Article  PubMed  CAS  Google Scholar 

  13. Meltzer HY, Matsubara S, Lee J-C. The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull 1989;25(3):390–2.

    PubMed  CAS  Google Scholar 

  14. Meltzer HY. The mechanism of action of novel antipsychotic drugs. Schizophr Bull 1991;17(2):263–87.

    Article  PubMed  CAS  Google Scholar 

  15. Costall B, Fortune DH, Naylor RJ, Marsden CD, Pycock C. Serotonergic involvement with neuroleptic catalepsy. Neuropharmacology 1975;14:859–868.

    Article  PubMed  CAS  Google Scholar 

  16. Hicks PB. The effect of serotonergic agents on haloperidol-induced catalepsy. Life Sci 1990;47:1609–1615.

    Article  PubMed  CAS  Google Scholar 

  17. Kostowski W, Gumulka W, Czlonkowski A. Reduced cataleptogenic effects of some neuroleptics in rats with lesioned midbrain raphe and treated with/?-chlorophenylalanine. Brain Res 1972;48:443–446.

    Article  PubMed  CAS  Google Scholar 

  18. Balsara J, Jadhav J, Chandorkar A. Effect of drugs influencing central serotonergic mechanisms on haloperidol-induced catalepsy. Psychopharmacology 1979;62:67–69.

    Article  PubMed  CAS  Google Scholar 

  19. Korsgaard S, Gerlach J, Christenson E. Behavioural aspects of serotonin-dopamine interaction in the monkey. Eur J Pharmacol 1985;118:245–252.

    Article  PubMed  CAS  Google Scholar 

  20. Casey DE. Dopaminergic and serotonergic aspects of acute extrapyramidal syndromes. In: Gram L, Ballant L, Meltzer H, Dahl S, ed. Clinical Pharmacology in Psychiatry. Heidelberg: Springer-Verlag, 1993: 101–110.

    Chapter  Google Scholar 

  21. Gerlach J, Casey DE. Drug treatment of schizophrenia: myths and realities. Current Opinion in Psychiatry 1994;7:65–70.

    Article  Google Scholar 

  22. Silver H, Nassar A. Fluvoxamine improves negative symptoms in treated chronic schizophrenia: An add-on, double-blind, placebo-controlled study. Biol Psychiatry 1992;31:698–704.

    Article  PubMed  CAS  Google Scholar 

  23. Silver H, Blacker M, Weller MPI, Lerer B. Treatment of chronic schizophrenia with cyproheptadine. Biol Psychiatry 1989;25:502–504.

    Article  PubMed  CAS  Google Scholar 

  24. Gelders Y, Vanden Bussche G, Reyntjens A, Janssen P. Serotonin-S2 receptor blockers in the treatment of chronic schizophrenia. Clin Neuropharmacol 1986;9, suppl 4:325–327.

    Google Scholar 

  25. Ceulemans DL, Gelders YG, Hoppenbrouwers M-LJ, Reyntjens AJ, Janssen PA. Effect of serotonin antagonism in schizophrenia: a pilot study with setoperone. Psychopharmacology 1985;85:329–332.

    Article  PubMed  CAS  Google Scholar 

  26. Reyntjens A, Gelders YG, Hoppenbrouwers M-LJ, Vanden Bussche G. Thymostenic effects of ritanserin (R 55667), a centrally acting serotonin-S2 receptor blocker. Drug Dev Res 1986;8:205–211.

    Article  CAS  Google Scholar 

  27. Mizuki Y, Kajamura N, Imai T, et al. Effects of mianserin on negative symptoms in schizophrenia. Int Clin Psychopharmacology 1990;5(2):83–95.

    Article  CAS  Google Scholar 

  28. Gerlach J. New antipsychotics: classification, efficacy, and adverse effects. Schizophr Bull 1991;17(2):289–309.

    Article  PubMed  CAS  Google Scholar 

  29. Lieberman J A. Understanding the meachanism of action of atypical antipsychotic drugs. A review of compunds in use and development. British Journal of Psychiatry 1994; 163 (suppl 22):7–18.

    Google Scholar 

  30. Leysen JE, Gommeren W, Eens A, de Chaffoy de Courcelles D, Stoof JC, Janssen PAJ. Biochemical profile of risperidone, a new antipsychotic. J Pharm Exp Ther 1988;247:661–670.

    CAS  Google Scholar 

  31. Marder SR, Meilbach R. Risperidone in the treatment of schizophrenia. American Journal of Psychiatry 1994;151(6):825–835.

    PubMed  CAS  Google Scholar 

  32. Müller-Spahn F. Risperidone in the treatment of chronic schizophrenic patients: An international double-blind parallel-group study versus haloperidol. Clin Neuropharmacol 1992;15, Suppl 1, Pt A:90A.

    Google Scholar 

  33. Marder SR. Risperidone: Clinical development: North American results. Clin Neuropharmacol 1992; 15, Suppl 1, Pt A:92A.

    Google Scholar 

  34. Nyberg S, Farde L, Eriksson L, Halldin C, Eriksson B. 5-HT2 and D2 dopamine receptor occupancy in the living human brain. A PET study with risperidone. Psychopharmacology 1993; 110:265–272.

    Google Scholar 

  35. Halldin C, Farde L, Högberg T, et al. A comparative PET-study of five carbon-11 or fluorine-18 labelled salicylamides. Preparation and in vitro dopamine D-2 binding. Int J Rad Appl Instrum:B: 1991;18(8):871–881.

    Article  PubMed  CAS  Google Scholar 

  36. Dannals RF, Ravert HT, Wilson AA, Wagner HN, Jr. An improved synthesis of (3-N-[11C]Methyl)spiperone. Appl Radiat Isot 1986;37(5):433–434.

    Article  CAS  Google Scholar 

  37. Litton JE, Holte S, Eriksson L. Evaluation of the Karolinska new positron camera system; the Scanditronix PC2048-15B. IEEE Trans Nucl Sci 1990;37(2):743–748.

    Article  Google Scholar 

  38. Farde L, Eriksson L, Blomquist G, Halldin C. Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET - A comparison to the equilibrium analysis. J Cereb Blood Flow Metab 1989;9:696–708.

    Article  PubMed  CAS  Google Scholar 

  39. Hall H, Farde L, Sedvall G. Human dopamine receptor subtypes - in vitro binding analysis using 3H-SCH 23390 and 3H-raclopride. J Neural Transm 1988;73:7–21.

    Article  PubMed  CAS  Google Scholar 

  40. Schotte A, Maloteaux JM, Laduron PM. Characterization and regional distribution of serotonin S2-receptors in human brain. Brain Res 1983;276:231–235.

    Article  PubMed  CAS  Google Scholar 

  41. Pazos A, Probst A, Palacios J. Serotonin receptors in the human brain. IV: Autoradiographic mapping of serotonin-2 receptors. Neuroscience 1987;21:123–139.

    Article  PubMed  CAS  Google Scholar 

  42. Farde L, Wiesel F-A, Stone-Elander S, et al. D2 dopamine receptors in neuroleptic-naive schizophrenic patients. Archives of General Psychiatry 1990;47:213–219.

    Article  PubMed  CAS  Google Scholar 

  43. Nordström A-L, Farde L, Pauli S, Litton J-E, Halldin C. PET analysis of central [11C]raclopride binding in healthy young adults and schizophrenic patients — reliability and age effects. Hum Psychopharmacol 1992;7:157–165.

    Article  Google Scholar 

  44. Nordström A-L, Farde L, Nyberg S, Karlsson P, Halldin C, Sedvall G. D1-, D2-and 5-HT2 receptor occupancy in relation to clozapine serum concentration - a PET study in schizophrenic patients, submitted 1995;.

    Google Scholar 

  45. Nordström A-L, Farde L, Halldin C. High 5-HT2 recpeptor occupancy in clozapine treated patients demonstrated by PET. Psychopharmacology 1993; 110:365–367.

    Article  PubMed  Google Scholar 

  46. Claus A, Bollen J, De Cuyper H, et al. Risperidone versus haloperidol in the treatment of chronic schizophrenic patients: a multicenter double-blind comparative study. Acta Psychiatr Scand 1992;85:295–305.

    Article  PubMed  CAS  Google Scholar 

  47. Nordström A-L. PET evaluation of dopamine hypotheses for antipsychotic drugs and schizophrenia. Karolinska Institutet, Dept of Psychiatry and Psychology, Stockholm, Sweden, 1993.

    Google Scholar 

  48. Trichard C, Paillère-Martinot M, Monfort J, et al. Cortical 5-HT2 receptors and antipsychotic dmgs studied with PET in schizophrenia: preliminary results. (Proceedings of the AEP sixth european congress, Barcelona nov 3-7) Anales de psiquiatria 1992;8, suppl 1:9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nyberg, S., Nordström, AL., Halldin, C., Farde, L. (1995). Is the 5-HT2-Receptor a Target for Antipsychotic Drug Action? PET Studies on Dopamine (D2 and Serotonin (5-HT2) Receptor Occupancy in Patients and Healthy Subjects. In: Comar, D. (eds) PET for Drug Development and Evaluation. Developments in Nuclear Medicine, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0429-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0429-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4191-1

  • Online ISBN: 978-94-011-0429-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics