Skip to main content

Positron Emission Tomography: Basic Principles and Potential Interest for Pharmacological Studies

  • Chapter
PET for Drug Development and Evaluation

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 26))

  • 113 Accesses

Abstract

Positron emission tomography (PET) is a non invasive imaging technique based on the external detection and recording of the decay of positron emitters incorporated in biological molecules introduced in a subject. Molecules of biological interest (water, sugars, aminoacids, drugs,…) are labelled with short-lived positron emitters isotopes of biological nuclei (13N, 15O, 11C, 18F), providing radiotracers with high specific activity and preserved biochemical properties. The most recent PET instruments allow to obtain time varying three-dimensional (3D) maps of the absolute radioactivity concentration distribution. By applying tracer kinetics principles to these PET data, it is then possible to estimate absolute values of the physiological parameters that determine the interactions and fate of the labelled molecule. With respect to pharmacology, PET can be used either for assessing in vivo the transport and binding regional parameters of a given drug in the tissues of the human body, or for investigating the regional effects of a drug on regional physiological parameters such as, blood flow, energy metabolism or protein synthesis rate. Because of these characteristics and of the low radiation doses that are necessary, PET can be safely used for clinical research purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeGrado TR, Turkington TG, Williams JJ, Stearns CW, Hoffman JM, and Coleman, RE. Performance characteristics of a whole-body PET scanner. J Nucl Med 1994;35:1398–1406.

    PubMed  CAS  Google Scholar 

  2. Wienhard K, Dahlbom M, Eriksson L, Michel C, Bruckbauer T, Pietrzyk U, and Heiss, WD. The ECAT EXACT HR: Performance of a new high resolution positron scanner. J Comput Assist Tomogr 1994;18:110–118.

    Article  PubMed  CAS  Google Scholar 

  3. Cutler PD, Cherry SR, Hoffman EJ, Digby WM, and Phelps ME. Design features and performance of PET system for animal research. J Nucl Med 1992;33:595–604.

    PubMed  CAS  Google Scholar 

  4. Phelps ME. PET: a biological imaging technique. Neurochem Res 1991;16:929–940.

    Article  PubMed  CAS  Google Scholar 

  5. Herscovitch P, Markham J, and Raichle ME. Brain blood flow measured with intravenous H2150. I. Theory and error analysis. J Nucl Med 1983;24:782–789.

    PubMed  CAS  Google Scholar 

  6. Delforge J, Syrota A, and Mazoyer BM. Identifiability analysis and parameter identification of an in vivo ligand-receptor model from PET data. IEEE Trans Biomed Eng 1990;37:653–661.

    Article  PubMed  CAS  Google Scholar 

  7. Patlak CS, Blasberg RG, and Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3:1–7.

    Article  PubMed  CAS  Google Scholar 

  8. Jones T, Tisley DW, Wilson BJ, Lammertsma A, Brown G, Brady F, Proce PM. Positron emission tomography for timor assessment. NMR Biomed 1992;5:265–269.

    Article  PubMed  CAS  Google Scholar 

  9. Leenders KL, Poewe WH, Palmer AJ, Brenton DP, Frackowiak RSJ. Inhibition of fluorodopa uptake into human brain by aminoacids demonstrated by positron emission tomography. Ann Neurol 1986;20:258–262.

    Article  PubMed  CAS  Google Scholar 

  10. Hoffman JM, Melega WP, Hawk TC, Grafton SC, Luxen A, Mahoney DK, Barrio J, Huang SC, Mazziotta JC, Phelps ME. The effect of carbidopa on 6-[18F]fluoro-L-dopa kinetics in positron emission tomography. J Nucl Med 1992;33:1472–1477.

    PubMed  CAS  Google Scholar 

  11. Delforge J, Syrota A, Bottlaender M, Varastet M, Loc’h C, Bendriem B, Crouzel C, Brouillet E, and Mazière M. Modeling analysis of (11C)flumazenil kinetics studied by PET: application to a critical study of the equilibrium approaches. J Cereb Blood Flow Metab 1993;13:454–468.

    Article  PubMed  CAS  Google Scholar 

  12. Fowler JS, MacGregor RR, Wolf AP, Arnett CD, Dewey SL, Schlyer D, Christman D, Logan J, Smith M, Sachs H, Aquilonius SM, Bjurling P, Halldin C, Hartvig P, Leenders KL, Lundqvist H, Oreland L, Stalnacke CG, and Langström B. Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET. Science 1987;235:481–485.

    Article  PubMed  CAS  Google Scholar 

  13. Nagasawa H, Saito H, Kogure K, Hatazawa J, Itoh M, Fujiwara, T, Watanuki S, Seo S, Iwata R, and Ido T. 6-(18F)Fluoro-dopa Metabolism in patients with hemi-parkinsonism studied by positron emission tomography. J Neurol Sci 1993;115:136–143.

    Article  PubMed  CAS  Google Scholar 

  14. Lundqvist H, Stalnacke CG, Langstrom B, and Jones B. Labeled metabolites in plasma after intravenous administration of (11CH3)-L-methionine. In: Greitz T et al, editors. The metabolism of the human brain studied with positron emission tomography. New York: Raven Press, 1985: 233–240.

    Google Scholar 

  15. Cook EH, Metz J, Leventhal BL, Lebovitz M, Nathan M, Semerdjian SA, Brown T, and Cooper MD. Fluoxetine effects on cerebral glucose metabolism. Neurorep 1994;5:1745–1748.

    Article  CAS  Google Scholar 

  16. Grasby PM, Friston KJ, Bench C, Cowen PJ, Frith CD, Liddle PF, Frackowiak RSJ, and Dolan RJ. Effect of the 5-HT1A Partial agonist buspirone on regional cerebral blood flow in man. Psychopharmacol 1992;108:380–386.

    Article  CAS  Google Scholar 

  17. Maziere B and Delforge J. Contribution of positron emission tomography to pharmacokinetic studies. In: Welling PG, Balant LP, editors. Handbook of experimental pharmacology, Vol. 110, Pharmacokinetics of drugs. Berlin: Springer-Verlag, 1994: 455–480.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mazoyer, B. (1995). Positron Emission Tomography: Basic Principles and Potential Interest for Pharmacological Studies. In: Comar, D. (eds) PET for Drug Development and Evaluation. Developments in Nuclear Medicine, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0429-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0429-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4191-1

  • Online ISBN: 978-94-011-0429-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics