Skip to main content

The Influence of Seismic Scattering on Monitoring

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 303))

Abstract

Seismic scattering impacts monitoring of underground nuclear tests through its effects on seismograms. For a Comprehensive Test Ban Treaty, the effects of scattering will be most pronounced for regional seismograms in the frequency range 1–20 Hz. Several methods have been used to examine scattering theoretically. Scattering from a single object shows that scattering may be divided into small-scale where objects are a wavelength or less in size, typically characterized by backscattering; and large-scale, the cause of fluctuations, blockage of phases, and deviation of ray paths. For many objects, single scattering theory treats the problem as an extension of one object by ignoring interactions between scatterers. Transport theory uses the conservation of energy, may be extended to multiple scattering, and has been particularly useful in explaining coda. A more difficult problem involves combining many scatterers with layered structure. Up to now this has mainly been treated by finite difference techniques, but other methods are under development. The effects of scattering predicted by theory, and observed in the field, are attenuation, fluctuations, wavetype conversion, and coda. One of the results of analysis of these phenomena is the characterization of small-scale earth structure as a self-affine random medium with velocity variations of 2–5% and a decreased number of scatterers at scales greater than 1–10 km. Attenuation due to small-scale scattering may be parameterized by frequency-dependent Q; an effect of large-scale structure that has received attention is Lg blockage due to zones of crustal thinning. Fluctuations reduce the coherency of seismic waves at separations of a wavelength or greater. A particular problem with transmission through structure with large-scale lateral variations is inaccuracy of locations due to distortion of ray paths. Wavetype conversion produces energy on components where there would be none in a plane layered medium. Again, a pressing problem is the generation of S waves from explosive sources, since this affects identification of sources. Coda allows investigation of attenuation and determination of source size.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K. (1981) Attenuation and scattering of short-period seismic waves in the lithosphere, in E.S. Husebye and S. Mykkeltveit (eds.), Identification of Seismic Sources-Earthquake or Underground Explosion, D. Reidel Publishing Company, Dordrecht, pp. 515–541.

    Chapter  Google Scholar 

  2. Sereno, T.J., Jr., Bratt, S.R. and Bache, T.C. (1988) Simultaneous inversion of regional wave spectra for attenuation and seismic moment in Scandinavia, Jour. Geophys. Res. 93, pp. 2019–2035.

    Article  Google Scholar 

  3. Aki, K. (1980) Scattering and attenuation of shear waves in the lithosphere, Jour. Geophys. Res. 85, pp. 6496–6504.

    Article  Google Scholar 

  4. Soukhanov, A.H. (ed.) (1984) Webster’s II New Riverside University Dictionary, Houghton Mifflin Company, Boston.

    Google Scholar 

  5. Mayeda, K., Konyanagi, S., Hoshiba, M., Aki, K. and Zheng, Y. (1992) A comparative study of scattering, intrinsic, and coda Q-1 for Hawaii, Long Valley, and central California between 1.5 and 15.0 Hz, Jour. Geophys. Res. 97, pp. 6643–6659.

    Article  Google Scholar 

  6. Chernov, L.A. (1960) Wave Propagation in a Random Medium (English translation), McGraw-Hill, New York.

    Google Scholar 

  7. Wu, R.-S. and Aki, K. (1985) Elastic wave scattering by random medium and small scale inhomogeneities in the lithosphere, Jour. Geophys. Res. 90, pp. 10261–10273.

    Article  Google Scholar 

  8. Holliger, K. and Levander, A.R. (1992) A stochastic view of lower crustal fabric based on evidence from the Ivrea zone, Geophys. Res. Lett. 19, pp. 1153–1156.

    Article  Google Scholar 

  9. Wu, R.-S., Xu, Z. and Li, X.-P. (1994) Heterogeneity spectrum and scale-anisotropy in the upper crust revealed by the German continental deep-drilling (KTB) holes, Geophys. Res. Lett. 21, pp. 911–914.

    Article  Google Scholar 

  10. Toksöz, M.N., Dainty, A.M. and Charrette, E.E. (1991) Coherency of ground motion at regional distances and scattering, Phys. Earth Planet. Int. 67, pp. 162–179.

    Article  Google Scholar 

  11. Aki, K. (1973) Scattering of P waves under the Montana Lasa, Jour. Geophys. Res. 78, pp. 1334–1346.

    Article  Google Scholar 

  12. Flatté, S.M. and Wu, R.-S. (1988) Small-scale structure in the lithosphere and asthenosphere deduced from arrival-time and amplitude fluctuations at NORSAR, Jour. Geophys. Res. 93, pp. 6601–6614.

    Article  Google Scholar 

  13. Wu, R.-S. and Aki, K. (1985) Scattering characteristics of elastic waves by an elastic heterogeneity, Geophysics 50, pp. 582–595.

    Article  Google Scholar 

  14. Charrette, E.E. (1991) Elastic Wave Scattering in Laterally Inhomogeneous Media, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.

    Google Scholar 

  15. Tie, A. (1987) On Scattering of Seismic Waves by a Spherical Obstacle, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, Georgia.

    Google Scholar 

  16. Korneev, V.A. and Johnson, L.R. (1993) Scattering of elastic waves by a spherical inclusion—I. Theory and numerical results, Geophys. Jour. Int. 115, pp. 230–250.

    Article  Google Scholar 

  17. Ben-Menahem, A. and Gibson, R.L., Jr. (1990) Scattering of elastic waves by localized anisotropic inclusions, Jour. Acoust. Soc. Amer. 87, pp. 2300–2309.

    Article  Google Scholar 

  18. Dainty, A.M. (1981) A scattering model to explain seismic observations in the lithosphere between 1 and 30 Hz, Geophys. Res. Lett. 8, pp. 1126–1128.

    Article  Google Scholar 

  19. Wu, R.-S. (1982) Attenuation of short period seismic waves due to scattering, Geophys. Res. Lett. 9, pp. 9–12.

    Article  Google Scholar 

  20. Aki, K. and Richards, P.G. (1980) Quantitative Seismology, W.H. Freeman and Company, San Francisco.

    Google Scholar 

  21. Aki, K. (1969) Analysis of seismic coda of local earthquakes as scattered waves, Jour. Geophys. Res. 74, pp. 615–631.

    Article  Google Scholar 

  22. Aki, K. and Chouet, B. (1975) Origin of coda waves: source, attenuation and scattering effects, Jour. Geophys. Res. 80, pp. 3322–3342.

    Article  Google Scholar 

  23. Dainty, A.M., Duckworth, R.M. and Tie, A. (1987) Attenuation and backscattering from local coda, Bull. Seis. Soc. Am. 77, pp. 1728–1747.

    Google Scholar 

  24. Sato, H. (1984) Attenuation and envelope formation of three-component seismograms of small local earthquakes in randomly inhomogeneous lithosphere, Jour. Geophys. Res. 89, pp. 1221–1241.

    Article  Google Scholar 

  25. Dainty, A.M. and Toksöz, M.N. (1977) Elastic wave propagation in a highly scattering medium—a diffusion approach, Jour. Geophysics 43, pp. 375–388.

    Google Scholar 

  26. Frankel, A. and Wennerberg, L. (1987) Energy-flux model of seismic coda: separation of scattering and intrinsic attenuation, Bull. Seis. Soc. Am. 77, pp. 1223–1251.

    Google Scholar 

  27. Gao, L.S., Lee, L.C., Biswas, N.N. and Aki, K. (1983) Comparison of single and multiple scattering effects on coda waves for local earthquakes, Bull. Seis. Soc. Am. 73, pp. 377–390.

    Google Scholar 

  28. Wu, R.-S. (1985) Multiple scattering and energy transfer of seismic waves—separation of scattering effect from the intrinsic attenuation, I, theoretical modeling, Geophys. Jour. Roy. Astron. Soc. 82, pp. 57–80.

    Article  Google Scholar 

  29. Zeng, Y., Su, F. and Aki, K. (1991) Scattering wave energy propagation in a random isotropic scattering medium, Jour. Geophys. Res. 86, pp. 607–619.

    Article  Google Scholar 

  30. Hoshiba, M. (1991) Simulation of multiple scattered coda wave excitation based on the energy conservation law, Phys. Earth Planet. Int. 67, pp. 123–136.

    Article  Google Scholar 

  31. Capon, J. (1974) Characterization of crust and upper mantle structure under Lasa as a random medium, Bull. Seis. Soc. Am. 64, pp. 235–266.

    Google Scholar 

  32. Flatté, S.M., Dashen, R., Munk, W.H., Watson, K.M. and Zachariasen, F. (1979) Sound Transmission through a Fluctuating Ocean, Cambridge University Press.

    Google Scholar 

  33. Oliver, J. and Ewing, M. (1958) Normal modes of continental surface waves, Bull. Seis. Soc. Am. 48, pp. 33–49.

    Google Scholar 

  34. Bostock, M.G. and Kennett, B.L.N. (1990) The effect of 3-D structure on Lg propagation patterns, Geophys. Jour. Int. 101, pp. 355–365.

    Article  Google Scholar 

  35. Der, Z., Marshall, M.E., O’Donnell, A. and McElfresh, T.W. (1984) Spatial coherence structure and attenuation of the Lg phase, site effects, and interpretation of the Lg coda, Bull. Seis. Soc. Am. 74, pp. 1125–1147.

    Google Scholar 

  36. Kennett, B.L.N. and Mykkeltveit, S. (1984) Guided wave propagation in laterally varying media—II. Lg waves in north-western Europe, Geophys. Jour. Roy. Astron. Soc. 79, pp. 257–267.

    Article  Google Scholar 

  37. Baumgardt, D.R. (1990) Investigation of teleseismic Lg blockage and scattering using regional arrays, Bull. Seis. Soc. Am. 80, pp. 2261–2281.

    Google Scholar 

  38. Kadinsky-Cade, K., Barazangi, M., Oliver, J. and Isacks, B. (1981) Lateral variations of high-frequency seismic wave propagation at regional distances across the Turkish and Iranian Plateaus, Jour. Geophys. Res. 86, pp. 9377–9396.

    Article  Google Scholar 

  39. Kennett, B.L.N., Bostock, M.G. and Xie, J.-K. (1990) Guided-wave tracking in 3-D: a tool for interpreting complex regional seismograms, Bull. Seis. Soc. Am. 80, pp. 633–642.

    Google Scholar 

  40. Frankel, A. and Clayton, R. (1986) Finite difference simulations of seismic scattering: implications for the propagation of short-period seismic waves in the crust and models of of crustal heterogeneity, Jour. Geophys. Res. 91, pp. 6465–6489.

    Article  Google Scholar 

  41. Hestholm, S.O., Husebye, E.S. and Ruud, B.O. (1994) Seismic wave propagation in complex crust-upper mantle media using 2-D finite-difference synthetics, Geophys. Jour. Int. 118, pp. 643–670.

    Article  Google Scholar 

  42. McLaughlin, K., Shkoller, B., Stevens, J. and Day, S. (1992) Recursive grid refinement for finite difference algorithms (abstract), EOS, The AGU 1992 Fall Meeting Abstract Supplement 73, p. 340.

    Google Scholar 

  43. Aki, K., Christoffersson, A. and Husebye, E.S. (1977) Determination of the three-dimensional seismic structure of the lithosphere, Jour. Geophys. Res. 82, pp. 277–296.

    Article  Google Scholar 

  44. Kennett, B.L.N. (1984) Guided wave propagation in laterally varying media—I. Theoretical development, Geophys. Jour. Roy. Astron. Soc. 79, pp. 235–255.

    Article  Google Scholar 

  45. Toksöz, M.N., Dainty, A.M., Mandal, B., Cheng, N., Charrette, E.E. and Schultz, C. (1991) Regional seismograms: attenuation and scattering, in J.F. Lewkowicz and J.M. McPhetres (eds.), Proceedings of the 13th Annual PL/DARPA Seismic Research Symposium, 8–10 October 1991, Rept. PL-TR-91-2208, Phillips Laboratory, Hanscom AFB MA 01731–5000, pp. 453–460.

    Google Scholar 

  46. Fisk, M.D. and McCartor, G.D. (1991) The phase screen method for vector elastic waves, Jour. Geophys. Res. 96, pp. 5985–6010.

    Article  Google Scholar 

  47. Wu, R.-S. (1994) Wide-angle elastic wave one-way propagation in heterogeneous media and an elastic wave complex-screen method, Jour. Geophys. Res. 99, pp. 751–766.

    Article  Google Scholar 

  48. Fisk, M.D., Charrette, E.E. and McCartor, G.D. (1992) A comparison of phase screen and finite difference calculations for elastic waves in random media, Jour. Geophys. Res. 97, pp. 12409–12423.

    Article  Google Scholar 

  49. Schultz, C. and Toksöz, M.N. (1993) Enhanced backscattering of seismic waves from a highly irregular interface: SH case, Geophys. Jour. Int. 114, pp. 91–102.

    Article  Google Scholar 

  50. Warren, N. (1972) Q and structure, The Moon 4, pp. 430–441.

    Article  Google Scholar 

  51. Dainty, A.M. and Toksöz, M.N. (1981) Seismic codas on the earth and the moon: a comparison, Phys. Earth Planet. Int. 26, pp. 250–260.

    Article  Google Scholar 

  52. Sato, H. (1982) Amplitude attenuation of impulsive waves in random media based on travel time corrected mean wave formalism, Jour. Acoust. Soc. Am. 71, 559–564.

    Article  Google Scholar 

  53. Aki, K. (1980) Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz, Phys. Earth Planet. Int. 21, pp. 50–60.

    Article  Google Scholar 

  54. Rautian, T.G. and Khalturin, V.I. (1978) The use of coda for determination of the earthquake source spectrum, Bull. Seis. Soc. Am. 68, pp. 923–948.

    Google Scholar 

  55. Nuttli, O.W. (1973) Seismic wave attenuation and magnitude relations for eastern North America, Jour. Geophys. Res. 78, pp. 876–885.

    Article  Google Scholar 

  56. Tsai, Y.B. and Aki, K. (1969) Simultaneous determination of seismic moment and attenuation of seismic surface waves, Bull. Seis. Soc. Am. 59, pp. 275–287.

    Google Scholar 

  57. Dainty, A.M. (1984) High frequency acoustic backscattering and seismic attenuation, Jour. Geophys. Res. 89, pp. 3172–3176.

    Article  Google Scholar 

  58. Toksöz, M.N. and Johnston, D.H. (eds.) (1981) Seismic Wave Attenuation, Geophysics Reprint Series No. 2, Society of Exploration Geophysicists, Tulsa, Oklahoma.

    Google Scholar 

  59. Liu, H.P., Anderson, D.L. and Kanamori, H. (1976) Velocity dispersion due to anelasticity: implications for seismology and mantle composition, Geophys. Jour. Roy. Astron. Soc. 47, pp. 41–58.

    Article  Google Scholar 

  60. Toksöz, M.N., Wu, R.-S. and Schmitt, D.P. (1987) Physical mechanisms contributing to seismic attenuation in the crust, in M.O. Erdik and M.N. Toksöz (eds.), Strong Ground Motion Seismology, D. Reidel Publishing Company, pp. 225–247.

    Chapter  Google Scholar 

  61. Bache, T., Marshall, P.D. and Bache, L. (1985) Q for teleseismic P waves from central Asia, Jour. Geophys. Res. 90, pp. 3575–3587.

    Article  Google Scholar 

  62. Toksöz, M.N., Dainty, A.M., Reiter, E. and Wu, R.-S. (1988) A model for attenuation and scattering in the earth’s crust, PAGEOPH 128, pp. 81–100.

    Article  Google Scholar 

  63. Mitchell, B.J. (1980) Frequency dependence of shear wave internal friction in the continental crust of eastern North America, Jour. Geophys. Res. 85, pp. 5212–5218.

    Article  Google Scholar 

  64. Baker, G.E., Cormier, V. and Minster, J.B. (1994) Effects on Pn, Pg, and Lg amplitudes of nuclear explosion waveforms recorded in southern California, in J.J. Cipar, J.F. Lewkowicz and J.M. McPhetres (eds.), Proceedings of the 16th Annual Seismic Research Symposium, 7–9 September 1994, Rept. PL-TR-94-2217, Phillips Laboratory, Hanscom AFB MA 01731–3010, pp. 27–33.

    Google Scholar 

  65. Zhang, T. and Lay, T. (1994) Analysis of short-period regional phase path effects associated with topography in Eurasia, Bull. Seis. Soc. Am. 84, pp. 119–132.

    Google Scholar 

  66. Ruzaikian, A.I., Nersesov, I.L., Khalturin, V.I. and Molnar, P. (1977) Propagation of Lg and lateral variation in crustal structure in Asia, Jour. Geophys. Res. 82, pp. 307–316.

    Article  Google Scholar 

  67. Ni, J. and Barazangi, M. (1983) High frequency seismic wave propagation beneath the Indian shield, Himalayan Arc, Tibetan Plateau, and surrounding regions: high uppermost mantle velocities and efficient Sn propagation beneath Tibet, Geophys. Jour. Roy. Astron. Soc. 72, pp. 655–689.

    Google Scholar 

  68. Kennett, B.L.N. (1986) Lg waves and structural boundaries, Bull. Seis. Soc. Am. 76, pp. 1133–1141.

    Google Scholar 

  69. Teng, Y.-C. and Kuo, J.T. (1994) The effect of sediments on attenuation, scattering and blockage of Lg wave propagation, in J.J. Cipar, J.F. Lewkowicz and J.M. McPhetres (eds.), Proceedings of the 16th Annual Seismic Research Symposium, 7–9 September 1994, Rept. PL-TR-94-2217, Phillips Laboratory, Hanscom AFB MA 01731–3010, pp. 331–337.

    Google Scholar 

  70. Ringdal, F. (1990) Teleseismic event detection using the NORESS array, with special reference to low-yield Semipalatinsk explosions, Bull. Seis. Soc. Am. 80, pp. 2127–2142.

    Google Scholar 

  71. von Seggern, D. (1973) Joint magnitude determination and analysis of variance for explosion magnitude estimates, Bull. Seis. Soc. Am. 63, pp. 827–845.

    Google Scholar 

  72. Ødegaard, E. and Doornbos, D.J. (1993) Seismic diffraction tomography of array data, Jour. Geophys. Res. 98, pp. 4377–4388.

    Article  Google Scholar 

  73. Ingate, S.F., Husebye, E.S. and Christoffersson, A. (1985) Regional arrays and processing schemes, Bull. Seis. Soc. Am. 75, pp. 1155–1177.

    Google Scholar 

  74. Abrahamson, N.A., Schneider, J.F. and Stepp, J.C. (1991) Empirical spatial coherency functions for application to soil-structure interaction analysis, Earthquake Spectra 7, pp. 1–27.

    Article  Google Scholar 

  75. Dainty, A.M. and Toksöz, M.N. (1990) Array analysis of seismic scattering, Bull. Seis. Soc. Am. 80, pp. 2242–2260.

    Google Scholar 

  76. Toksöz, M.N., Dainty, A.M. and Coates, R. (1992) Effects of lateral heterogeneities on seismic motion, Proc. ESG1992 Int. Symp. on Effects of Geology on Seismic Motion, Odawara, Japan.

    Google Scholar 

  77. Vernon, F.L., Fletcher, J., Carroll, L., Chave, A. and Sembera, E. (1991) Coherence of seismic body waves from local events as measured by a small-aperture array, Jour. Geophys. Res. 96, pp. 11981–11996.

    Article  Google Scholar 

  78. Bame, D.A., Walck, M.C. and Hiebert-Dodd, K.L. (1990) Azimuth estimation capabilities of the NORESS regional array, Bull. Seis. Soc. Am. 80, pp. 1999–2015.

    Google Scholar 

  79. Richter, C.F. (1958) Elementary Seismology, W.H. Freeman and Company, San Francisco.

    Google Scholar 

  80. Nuttli, O.W. (1986) Yield estimates of Nevada Test Site explosions obtained from Lg waves, Jour. Geophys. Res. 91, pp. 2137–2151.

    Article  Google Scholar 

  81. Patton, H.P. (1988) Application of Nuttli’s method to estimate yield of Nevada Test Site explosions on Lawrence Livermore Laboratory’s digital seismic system, Bull. Seis. Soc. Am. 78, pp. 873–884.

    Google Scholar 

  82. Hansen, R.A., Ringdal, F. and Richards, P.G. (1990) The stability of rms Lg measurements and their potential for accurate estimation of the yields of Soviet underground nuclear explosions, Bull. Seis. Soc. Am. 80, pp. 2106–2126.

    Google Scholar 

  83. Dainty, A.M. (1991) Statistical modes and Lg (abstract), Seis. Res. Lett. 62, p. 18 (abs.).

    Google Scholar 

  84. Marcuse, D. (1974) Theory of Optical Dielectric Waveguides, Academic Press.

    Google Scholar 

  85. Bennett, T.J. and Murphy, J.R. (1986) Analysis of seismic discrimination capabilities using regional data from western United States events, Bull. Seis. Soc. Am. 76, pp. 1069–1086.

    Google Scholar 

  86. Mandal, B. and Toksöz, M.N. (1991) Effects of an explosive source in an anisotropic medium, in S.R. Taylor, H.J. Patton and P.G. Richards (eds.), Explosion Source Phenomenology, American Geophysical Union Geophysical Monograph 65, Washington, DC, pp. 261–268.

    Chapter  Google Scholar 

  87. Day, S. and McLaughlin, K.L. (1991) Seismic source representations for spall, Bull. Seis. Soc. Am. 81, pp. 191–201.

    Google Scholar 

  88. Stump, B.W. (1985) Constraints on explosive sources with spall from near-source waveforms, Bull. Seis. Soc. Am. 75, pp. 361–377.

    Google Scholar 

  89. Patton, H.J. and Taylor, S.R. (1994) Analysis of Lg spectral ratios from NTS explosions: implications for the source mechanisms of spall and the generation of Lg waves, Bull. Seis. Soc. Am., in press.

    Google Scholar 

  90. Gupta, I.N. and Blandford, R.R. (1983) A mechanism for generation of short-period transverse motion from explosions, Bull. Seis. Soc. Am. 73, pp. 571–591.

    Google Scholar 

  91. Greenfield, R.J. (1971) Short-period P-wave generation by Rayleigh wave scattering at Novaya Zemlya, Jour. Geophys. Res. 76, pp. 7988–8002.

    Article  Google Scholar 

  92. Gupta, I.N., McElfresh, T.W. and Wagner, R.A. (1991) Near-source scattering of Rayleigh to P in teleseismic arrivals from Pahute Mesa (NTS) shots, in S.R. Taylor, H.J. Patton and P.G. Richards (eds.), Explosion Source Phenomenology, American Geophysical Union Geophysical Monograph 65, Washington, DC, pp. 151–159.

    Chapter  Google Scholar 

  93. Bannister, S.C., Husebye, E.S. and Ruud, B.O. (1990) Teleseismic P coda analyzed by three-component and array techniques: deterministic location of topographic P-to-Rg scattering near the NORESS array, Bull. Seis. Soc. Am. 80, pp. 1969–1986.

    Google Scholar 

  94. Bullitt, J.T. and Toksöz, M.N. (1985) Three-dimensional ultrasonic modeling of Rayleigh wave propagation, Bull. Seis. Soc. Am. 75, pp. 1087–1104.

    Google Scholar 

  95. Jih, R.-S. (1994) Statistical characterization of rugged propagation paths with application to Rg scattering study, Technical Report, Phillips Laboratory, Kirtland AFB, NM.

    Google Scholar 

  96. McLaughlin, K.L. and Jih, R.-S. (1987) Finite-difference simulations of Rayleigh wave scattering by shallow heterogeneity, Scientific Report AFGL-TR-87-0322, Phillips Laboratory, Hanscom AFB MA 01731–5000.

    Google Scholar 

  97. Herrmann, R.B. (1980) Q estimates using the coda of local earthquakes, Bull. Seis. Soc. Am. 70, pp. 447–468.

    Google Scholar 

  98. Dainty, A.M. and Schultz, C.A. (1994) Crustal reflections and the nature of regional P coda, Bull. Seis. Soc. Am., in press.

    Google Scholar 

  99. Pan, Y., Mitchell, B.J., Xie, J. and Ni, J. (1992) Lg coda Q across northern Eurasia, in J.F. Lewkowicz and J.M. McPhetres (eds.), Proceedings of the 14th Annual PL/DARPA Seismic Research Symposium, Rept. PL-TR-92-2210, Phillips Laboratory, Hanscom AFB MA 01731-5000, pp. 311–317.

    Google Scholar 

  100. Tsumura, K. (1967) Determination of earthquake magnitude from total duration of oscillation, Bull. Earthquake Res. Inst. Tokyo Univ. 15, pp. 7–15.

    Google Scholar 

  101. Bullitt, J.T. and Cormier, V. (1984) The relative performance of mb and alternative measures of elastic energy in estimating source size and explosion yield, Bull. Seis. Soc. Am. 74, pp. 1863–1882.

    Google Scholar 

  102. Mayeda, K. (1993) mb(LgCoda): a stable single station estimator of magnitude, Bull. Seis. Soc. Am. 83, pp. 851–861.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dainty, A.M. (1996). The Influence of Seismic Scattering on Monitoring. In: Husebye, E.S., Dainty, A.M. (eds) Monitoring a Comprehensive Test Ban Treaty. NATO ASI Series, vol 303. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0419-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0419-7_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4187-4

  • Online ISBN: 978-94-011-0419-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics