Skip to main content

Theory of Mesoscopic Quantum Tunneling in Magnetism: A WKB Approach

  • Chapter
Quantum Tunneling of Magnetization — QTM ’94

Part of the book series: NATO ASI Series ((NSSE,volume 301))

Abstract

This is a comprehensive and self-contained review of WKB theory for mesoscopic quantum tunneling in magnetism. It describes the behavior of a large quantum spin, e.g., a magnetic moment, in an anisotropic surroundings and its penetration into a classically forbidden region. The tunneling rate of a quantum spin is obtained in the semiclassicaJ limit when ħ → 0 and the spin quantum number S → ∞ in such a way that ħS remains constant. The key idea is to single out one of the anisotropy axes, say the z-axis, to work in a representation with S z diagonal, and to describe quantum tunneling as a hopping process on the spectrum of S z . We sketch the original motivation of our theory, present the WKB basics, compute the tunneling rate, prove its universal power-law dependence upon the anisotropy constants which is independent of the specific form of the anisotropy, and discuss the underlying physics. We treat several examples, including antiferromagnetic tunneling. In addition, we provide a general theory of quantum coherence, including Kramers degeneracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbara, B., Sampaio, L.C., Wegrowe, J.E., et al. (1993) J. Appl. Phys. 73, 6703–6708.

    Article  ADS  Google Scholar 

  2. Barbara, B., and Chudnovsky, E.M. (1990) Phys. Lett. A 145, 205–208.

    Article  ADS  Google Scholar 

  3. Bellman, R. (1970) Introduction to Matrix Analysis , 2nd ed., MacGraw-Hill, New York.

    MATH  Google Scholar 

  4. Bohm, D. (1951) Quantum Theory, Prentice-Hall, Englewood Cliffs, NJ; reprinted by Dover (Mineola, NY, 1989). See in particular Chapter 12.

    Google Scholar 

  5. Brink, D.M. and Satchler, G.R. (1968) Angular Momentum, 2nd ed., Oxford University Press, Oxford; in particular, Eqs. (2.15), (2.17) and (2.18).

    Google Scholar 

  6. Brillouin, L. (1926) C.R. Acad. Sci. Paris 183, 24–26

    Google Scholar 

  7. Brillouin, L.(1926) J. Physique 7, 353–368.

    Google Scholar 

  8. Chudnovsky, E.M. (1993) J. Appl. Phys. 73, 6697–6702.

    Article  ADS  Google Scholar 

  9. Chudnovsky, E.M., and Gunther, L. (1988) Phys. Rev. Lett. 60, 661–664.

    Article  MathSciNet  ADS  Google Scholar 

  10. Dirac, P.A.M. ( 1957) The Principles of Quantum Mechanics, 4th ed., Oxford University Press, Oxford; Sect. 36.

    Google Scholar 

  11. Enz, M., and Schilling, R. (1986) J. Phys. C 19, 1765–1770 and L711-L715.

    Article  ADS  Google Scholar 

  12. Erdélyi, A. (1956) Asymptotic Expansions, Dover, New York.

    MATH  Google Scholar 

  13. Furry, W.H. (1947) Phys. Rev. 71, 360–371.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Goldstein, H. (1950) Classsical Mechanics, Addison-Wesley, Reading, MA; 2nd ed., 1980.

    Google Scholar 

  15. Green, G. (1837) Cambr. Phil. Trans. 6, 457–462.

    ADS  Google Scholar 

  16. Gradshteyn, I.S., and Ryzhik, I.M. (1965) Tables of Integrals, Series, and Products, 4th ed., Academic, New York.

    Google Scholar 

  17. van Hemmen, J.L., and Sütö, A. (1986) Europhys. Lett. 1, 481–490.

    Article  ADS  Google Scholar 

  18. van Hemmen, J.L., and Sütö, A. (1986) Physica 141B, 37–75.

    Google Scholar 

  19. van Hemmen, J.L., and Sütö, A. (1985) Z. Phys. B 61, 263–266.

    Article  ADS  Google Scholar 

  20. van Hemmen, J.L., and Nieuwenhuys, G.J. (1986) Europhys. Lett. 2, 797–803.

    Article  ADS  Google Scholar 

  21. van Hemmen, J.L., and Wreszinski, W.F. (1988) Commun. Math. Phys. 119, 213–219.

    Article  ADS  MATH  Google Scholar 

  22. Kemble, E.C. (1937) Fundamental Principles of Quantum Mechanics, McGraw-Hill, New York; pp. 90–112 and 572–578.

    Google Scholar 

  23. Kato, T. (1966) Perturbation Theory for Linear Operators, Springer, New York; Chapter II.

    MATH  Google Scholar 

  24. Kramers, H.A. (1926) Z. Phys. 39, 826–840.

    ADS  Google Scholar 

  25. Kramers, H.A. (1930) Proc. Acad. Sci. Amsterdam 33, 959–972; Sect. 2.

    MATH  Google Scholar 

  26. Kramers, H.A. (1957) Quantum Mechanics, North-Holland, Amsterdam; reprinted by Dover (New York, 1964) p. 384.

    MATH  Google Scholar 

  27. Krive, I.V., and Zaslavskii, O.B. (1990) J. Phys.: Condens. Matter 2, 9457–9462.

    Article  ADS  Google Scholar 

  28. Landau, L.D. and Lifshitz, E.M. (1965) Quantum Mechanics (Nonrelativistic Theory), 2nd ed., Addison-Wesley, Reading, MA; Chapter 7.

    Google Scholar 

  29. Langer, R.E. (1937) Phys. Rev. 51, 669–676.

    Article  ADS  Google Scholar 

  30. Liouville, J. (1837) J. des Math. 2, 22–25

    Google Scholar 

  31. Messiah, A. (1961) Quantum Mechanics, Vol. II; see in particular Sects. XV.18–21.

    Google Scholar 

  32. Mydosh, J.A. (1983) Some recent high-temperature experiments on spin glasses, in: J.L. van Hemmen and I. Morgenstern (eds), Heidelberg Colloquium on Spin Glasses, Springer, Berlin, pp. 38–59, and Europhys. News (December, 1983); Fig. 1 stems from the second reference.

    Chapter  Google Scholar 

  33. Olver, F.W.J. (1974) Asymptotics and Special Functions, Academic, New York.

    Google Scholar 

  34. Pauli, W. (1973) Lectures on Physics: Volume 5. Wave Mechanics, edited by C.P. Enz, MIT Press, Cambridge, MA; Chapter 7.

    Google Scholar 

  35. Pauli, W. (1958) Die allgemeinen Prinzipien der Wellenmechanik, in: S. Flugge (ed), Handbuch der Physik, Vol. V/l, Springer, Berlin, pp. 1–168. This is a reprint of the epoch making 1933 paper, which appeared in Vol. XXIV/1 of the same series, then edited by H. Geiger and K. Scheel. There also exists an English translation: General Principles of Quantum Mechanics (Springer, Berlin, 1980)

    Google Scholar 

  36. Sakurai, J.J. (1985) Modern Quantum Mechanics, Addison-Wesley, Redwood City, CA; Sect. 3.5.

    Google Scholar 

  37. Scharf, G., Wreszinski, W.F., and van Hemmen, J.L. (1987) J. Phys. A: Math. Gen. 20, 4309–4319.

    Article  ADS  Google Scholar 

  38. Schulman, L.S. (1981) Techniques and Applications of Path Integration, Wiley, New York.

    MATH  Google Scholar 

  39. Stamp, P.C.E., Chudnovsky, E.M., and Barbara, B. (1992) Int. J. Mod. Phys. B 6, 1355–1473.

    Article  ADS  Google Scholar 

  40. Toulouse, G. (1977) Commun. on Physics 2, 115–119.

    Google Scholar 

  41. Wentzel, G. (1926) Z. Phys. 38, 518–529.

    Article  ADS  MATH  Google Scholar 

  42. Zwaan, A. (1929) Intensitäten im Ca-Funkenspektrum, Doctoral Dissertation, University of Utrecht; see in particular Chapter III. The dissertation has been published in Archives Néerlandaises des Sciences Exactes et Naturelles, Ser. 3A (1929) 1–76. Andries Zwaan, a student of Kramers, took advantage of older work of Sir George Stokes on what is now called the Stokes phenomenon; cf. Sect. 7.22 of G.N. Watson (1922) A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, and Sects. 4.3 and 13.2 of Olver [32].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Van Hemmen, J.L., Sütö, A. (1995). Theory of Mesoscopic Quantum Tunneling in Magnetism: A WKB Approach. In: Gunther, L., Barbara, B. (eds) Quantum Tunneling of Magnetization — QTM ’94. NATO ASI Series, vol 301. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0403-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0403-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4180-5

  • Online ISBN: 978-94-011-0403-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics