Skip to main content

Acoustic and Magnetic Properties of Rare-Earth-Ion-Doped Glasses: Elastic and Magnetic Tunneling States

  • Chapter
Quantum Tunneling of Magnetization — QTM ’94

Part of the book series: NATO ASI Series ((NSSE,volume 301))

Abstract

The acoustic properties of glasses at low temperature have been extensively studied [1,2]. They have been explained very successfully in the framework of the theory of elastic tunneling states (ETS) [3,4]. Obviously, this phenomenological theory does not reflect precisely the microscopic nature of the ETS, which is still unknown. More recently, the study of glasses doped with rare-earth ions has shown that, in addition to ETS, there are in these glasses magnetic tunneling states (MTS), if the dilute ions are magnetic and have Kramers degeneracy [5,6]. The MTS, attributable to the magnetic rare-earth ions, can be explained with the theory of tunneling of large spins having strong anisotropy energy [7–10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunklinger, S. and Raychaudhuri, A.K. (1985) Progress in Low Temperature Physics (1985) Elsevier, Amsterdam, Vol. 9.

    Google Scholar 

  2. Phillips, W.A. (1987) Rep. Prog. Phys. 50, 1657.

    Article  ADS  Google Scholar 

  3. Anderson, P.W. Halperin, B.I. and Varma, C.M. (1972) Philos. Mag. 25, 1.

    Article  ADS  MATH  Google Scholar 

  4. Phillips, W.A. (1972) J. Low Temp. Phys. 7, 351.

    Article  ADS  Google Scholar 

  5. Lerbet, F., and Bellessa, G. (1988) J. Phys. (Paris) 49, 1179.

    Article  Google Scholar 

  6. Vernier, N., and Bellessa, G. (1993) Phys. Rev. B48, 12842.

    ADS  Google Scholar 

  7. Korenblit, I.Ya. and Shender, E.F. (1978) Sov. Phys. JETP 48, 937.

    ADS  Google Scholar 

  8. van Hemmen, J.L. and Sütö, A. (1986) Europhys. Lett 1, 481.

    Article  ADS  Google Scholar 

  9. Enz, M. and Schilling, R. (1986) J. Phys. C: Solid State Phys. 19, L711.

    Article  ADS  Google Scholar 

  10. Chudnovsky, E.M. and Gunther, L. (1988) Phys. Rev. Lett 60, 661.

    Article  MathSciNet  ADS  Google Scholar 

  11. Vernier, N. and Bellessa, G. (1993) Phys. Rev. Lett. 71, 4063.

    Article  ADS  Google Scholar 

  12. Vernier, N., Bellessa, G. and Parshin, D.A., to be published.

    Google Scholar 

  13. Zeller, R.C. and Pohl, R.O. (1971) Phys. Rev. B4, 2029.

    ADS  Google Scholar 

  14. Jäckie, J., Piche, L., Arnold, W. and Hunklinger, S. (1976) J. Non-Cryst. Solids. 20, 365.

    Article  Google Scholar 

  15. Lerbet, F. and Bellessa, G. (1987) J. Phys. (Paris) 48, 2111.

    Article  Google Scholar 

  16. Vernier, N. and Bellessa, G. (1991) J. Magn. Magn. Mater. 102, L15.

    Article  ADS  Google Scholar 

  17. Chappert, C., Beauvillain, P. and Renard, J.P. (1980) J. Magn. Magn. Mater. 15–18,

    Google Scholar 

  18. Harris, R., Plischke, M. and Zuckermann, M.J. (1973) Phys. Rev. Lett. 31, 160.

    Article  ADS  Google Scholar 

  19. Moorjani, K. and Coey, J.M.D. (1984) “Magnetic glasses”, Elsevier, Amsterdam.

    Google Scholar 

  20. Misra, S.K, Bacquet, G. and Frandon, J. (1990) J. Phys. Condens. Matter 2, 5603.

    Article  ADS  Google Scholar 

  21. Chudnovsky, E.M. and Gunther, L. (1988) Phys. Rev. Lett. 60, 661.

    Article  MathSciNet  ADS  Google Scholar 

  22. Garg, A. (1993) Europhys. Lett. 22, 205.

    Article  ADS  Google Scholar 

  23. Coey, J.M.D. and von Molnar, S. (1978) J. Phys. Lettres 39, L–327.

    Google Scholar 

  24. Doussineau, P., Frenois, P., Leisure, R.G., Levelut, A., and Prieur, J.Y. (1980) J. Phys. (Paris) 41, 1193.

    Article  Google Scholar 

  25. Wenhao Wu, Ellman, B., Rosenbaum, T.F., Aeppli and Reich, D.H. (1991) Phys. Rev. Lett. 61, 2076.

    ADS  Google Scholar 

  26. Hardy, W.N. and Whitehead, L.A., (1981) Rev. Sci. Instrum. 52,213.

    Article  ADS  Google Scholar 

  27. Froncisz, W. and Hyde, J.S. (1982) J. Magn. Reson. 47, 515.

    Google Scholar 

  28. Loss, D., DiVincenzo, D.P. and Grinstein, G. (1992) Phys. Rev. Lett. 69, 3232.

    Article  ADS  Google Scholar 

  29. von Delft, J. and Henley, C.L. (1992) Phys. Rev. Lett. 69, 3236.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bellessa, G., Vernier, N., Lerbet, F. (1995). Acoustic and Magnetic Properties of Rare-Earth-Ion-Doped Glasses: Elastic and Magnetic Tunneling States. In: Gunther, L., Barbara, B. (eds) Quantum Tunneling of Magnetization — QTM ’94. NATO ASI Series, vol 301. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0403-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0403-6_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4180-5

  • Online ISBN: 978-94-011-0403-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics