Skip to main content

Abstract

Resonant capture describes the behavior of a weakly coupled multi-degree-of-freedom system when two or more of its uncoupled frequencies become locked in resonance. Flow on the region of phase space near the resonance (the resonance manifold) involves a region bounded by a separatrix in the uncoupled (ε = 0) system. Capture corresponds to motions which appear to cross into the interior of the separated region for ε > 0.

We offer two approximate methods for estimating which initial conditions lead to capture: an energy method and a perturbation method based on invariant manifold theory. These methods are applied to a model problem involving the spinup of an unbalanced rotor attached to an elastic support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beigie, D., Leonard, A., and Wiggins, S., ‘Chaotic transport in the homoclinic and heteroclinic tangle regions of quasiperiodically forced two-dimensional dynamical systems’, Nonlinearity 4, 1991, 775–819.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bosley, D. L. and Kevorkian, J., ‘Sustained resonance in very slowly varying oscillatory Hamiltonian systems’, SIAM Journal of Applied Mathematics 51, 1991, 439–471.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourland, F. J. and Haberman, R., ‘Capture and the connection formulas for the transition across a separatrix’, in Asymptotic Analysis and the Numerical Solution of P.D.E.’s, Kaper, H. G. and Garbey, M. (eds.), Dekker, New York, 1991, pp. 17–30.

    Google Scholar 

  4. Bourland, F. J. and Haberman, R., ‘Separatrix crossing: Time-invariant potentials with dissipation’, SIAM Journal of Applied Mathematics 50, 1990, 1716–1744.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bridge, J., ‘Chaos in dynamical systems with periodically disappearing separatrices’, Ph.D. Thesis, Cornell University, 1992.

    Google Scholar 

  6. Bridge, J. and Rand, R., ‘Chaos and symbol sequences in systems with a periodically-disappearing figure-eight separatrix’, in Bifurcation Phenomena and Chaos in Thermal Convection, Bau, H. H., Bertram, L.A., and Korpela, S. A. (eds.), American Society of Mechanical Engineering, HTD, Vol. 124, 1992, pp. 47–55.

    Google Scholar 

  7. Cary, J. R. and Skodje, R. T., ‘Phase change between separatrix crossings’, Physica D 36, 1989, 287–316.

    Article  MathSciNet  MATH  Google Scholar 

  8. Cary, J. R., Escande, D. F., and Tennyson, J. L., ‘Adiabatic-invariant change due to separatrix crossing’, Physics Reviews A 34, 1986, 4256–4275.

    Article  Google Scholar 

  9. Coppola, V. T. and Rand, R. H., ‘Chaos in a system with a periodically disappearing separatrix’, Nonlinear Dynamics 1, 1990, 401–420.

    Article  Google Scholar 

  10. Hall, C. D. and Rand, R. H., ‘Spinup dynamics of axial dual-spin spacecraft’, in Astronomies 1991, Advances in the Astronautical Sciences, Kaufman, B., Alfriend, K. T., Roehrich, R. L., and Dasenbrock, R. R. (eds.) Vol. 76, American Astronautical Society, 1992.

    Google Scholar 

  11. Henrard, J., ‘Capture into resonance: An extension of the use of adiabatic invariants’, Celestial Mechanics 27, 1982, 3–22.

    Article  MathSciNet  MATH  Google Scholar 

  12. Henrard, J., ‘A second fundamental model for resonance’, Celestial Mechanics 30, 1983, 197–218.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaper, T. J., Kovacic, G., and Wiggins, S., ‘Melnikov functions, action, and lobe area in Hamiltonian systems’, Los Alamos Report LA-UR 90–2455, 1990.

    Google Scholar 

  14. Lochak, P. and Meunier, C., Multiphase Averaging for Classical Systems, Springer-Verlag, Berlin-New York, 1988.

    Book  MATH  Google Scholar 

  15. Neishtadt, A. I., ‘Passage through a separatrix in a resonance problem with a slowly-varying parameter’, Journal of Applied Mathematics and Physics (PMM) 39, 1975, 594–605.

    MathSciNet  Google Scholar 

  16. Neishtadt, A. I., ‘Averaging and passage through resonances’, in Proceedings of the International Congress of Mathematicians, Kyoto, Japan, 1990.

    Google Scholar 

  17. Rand, R. H., Kinsey, R. J., and Mingori, D. L., ‘Dynamics of spinup through resonance’, International Journal of Nonlinear Mechanics 27, 1992, 489–502.

    Article  MATH  Google Scholar 

  18. Robinson, C., ‘Sustained resonance for a nonlinear system with slowly varying coefficients’, SIAM Journal of Mathematical Analysis 14, 1983, 847–860.

    Article  MATH  Google Scholar 

  19. Sanders, J. A. and Verhulst, F., Averaging Methods in Nonlinear Dynamical Systems, Springer-Verlag, Berlin-New York, 1985.

    MATH  Google Scholar 

  20. Vakakis, A. F., ‘Exponentially small splittings of manifolds in a rapidly forced Duffing system’, Journal of Sound and Vibration 170, 1994, 119–129.

    Article  MathSciNet  MATH  Google Scholar 

  21. Yee, R. K., ‘Spinup dynamics of a rotating system with limited torque’, M.S. Thesis, UCLA, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Quinn, D., Rand, R., Bridge, J. (1995). The Dynamics of Resonant Capture. In: Bajaj, A.K., Shaw, S.W. (eds) Advances in Nonlinear Dynamics: Methods and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0367-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0367-1_1

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4164-5

  • Online ISBN: 978-94-011-0367-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics