Skip to main content

Intravascular ultrasound

Possibilities of image enhancement by signal processing

  • Chapter
Advances in Imaging Techniques in Ischemic Heart Disease

Summary

Cross-sectional frames of intravascular ultrasonic data are the basis of two-dimensional (2D) quantitative information and three-dimensional (3D) reconstruction. A method for semi-automatic 3D image quantification for volumetric study of series of echo slices has been developed. This is based on interactive contour analysis of two perpendicular longitudinal sections obtained from the 3D data as a first step. Intraobserver variations appear to be low.

Backscatter from blood may obscure border lines and severely limit automatic contour procedures and 3D imaging. Image frame averaging methods have been applied with limited success to separate blood from tissue. These methods tend to blur fast moving structures.

New technologies to use the radiofrequency (RF) ultrasonic signal for image improvement are in their infancy, but look promising. These methods include:

  1. 1.

    Extraction of quantitative tissue parameters based on spectral information obtained from the RF signal.

  2. 2.

    Cross-correlation of a time sequence of RF traces. This yields a high value at the wall region against a low value elsewhere. It is shown that with this technique the image can be improved drastically.

  3. 3.

    Another approach is elastography. With intravascular elastography, external sound waves are enforced on the tissue to allow differentiation of wall properties. Calculated simulations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roelandt JRTC, Di Mario C, de Feyter PJ, van den Brand M, Serruys PW, Bom N. Intravascular ultrasound: instrumentation, image interpretation, promises and pitfalls. In P. Hanrath et al: Cardiovascular Imaging by Ultrasound, 1993, Kluwer Academic Publishers: p. 325–341.

    Google Scholar 

  2. Yock PG, Linker DT. Intravascular ultrasound. Looking below the surface of vascular disease. Circulation 1990;81:1715–1718.

    Article  PubMed  CAS  Google Scholar 

  3. Hodgson JM, editor. Atlas of intravascular ultrasound. New York: Raven Press, 1994.

    Google Scholar 

  4. Honye J, Ashit J, Mahon DJ, Tobis JM. Atherosclerotic plaque eccentricity: a comparison of angiography and intravascular ultrasound imaging [abstract]. Circulation 1991; 84: (4 Suppl):II701.

    Google Scholar 

  5. Tobis JM, Yock PG, editors. Intravascular ultrasound imaging. New York: Churchill Livingstone, 1992.

    Google Scholar 

  6. Gussenhoven EJ, Bom N, Roelandt JRTC, guest editors. Int J Card Imaging 1991;(3–4): 145–311.

    Google Scholar 

  7. Bom N, ten Hoff H, Lancée CT, Gussenhoven EJ, Bosch JG. Early and recent intraluminal ultrasound devices. Int J Card Imaging1989;4:79–88.

    Article  PubMed  CAS  Google Scholar 

  8. Wells PNT. Developments in Medical Electronics. In: Proceedings of the European Symposium on Medical Electronics. World Medical Electronics, 1966:272–277.

    Google Scholar 

  9. Hodgson JM, Graham SP, Savakus AD, et al. Clinical percutaneous imaging of coronary anatomy using an over-the-wire ultrasound catheter system. Int J Card Imaging 1989;4:187–193.

    Article  PubMed  CAS  Google Scholar 

  10. Bom N, Lancée CT, van Egmond FC. An ultrasonic intracardiac scanner. Ultrasonics 1972; 10:72–76.

    Article  PubMed  CAS  Google Scholar 

  11. Li W, Gussenhoven EJ, Bosch JG, Mastik F, Reiber JHC, Bom N. A computer-aided analysis system for the quantitative assessment of intravascular ultrasound images. Comput Cardiol 1990:333–336.

    Google Scholar 

  12. Li W, Gussenhoven WJ, Zhong Y, et al. Validation of quantitative analysis of intravascular ultrasound images. Int J Card Imaging1991b;6:247–253.

    Article  Google Scholar 

  13. von Birgelen C, di Mario C, van der Putten N, Li W, Gil R, Prati F, Ligthart J, Camenzind E, Ozaki Y, Serruys PW, Roelandt JRTC. Quantification in three-dimensional intracoronary ultrasound: importance of image acquisition and segmentation. Cardiologie1995;2:67–72.

    Google Scholar 

  14. Li W, von Birgelen C, di Mario C, Boersma E, Gussenhoven EJ, van der Putten N, Bom N. Semiautomatic contour detection for volumetric quantification of intracoronary ultrasound. In: Computers in Cardiology 1994. IEEE Com Soc Press 1994: 277–280

    Google Scholar 

  15. von Birgelen C, di Mario C, Li W, et al. Volumetric quantification in intracoronary ultrasound: validation of a new automatic contour detection method with integrated user interaction [abstract]. Circulation 1994;90(4 Suppl):I550.

    Google Scholar 

  16. van der Heiden MS, de Kroon MGM, Bom N, Borst C. Ultrasonic Backscatter behaviour of human blood in-vitro: manipulated blood samples and shear rate dependence. In de Kroon M.G.M. Acoustic backscatter in arteries, S.L.:S.N., 1993:53–71.

    Google Scholar 

  17. Hanss M, Boynard M. Ultrasound backscattering from blood; haematocrit and erythrocyte aggregation dependence. In: Linzer M, editor. Ultrasonic tissue characterization II. Washington: National Bureau of Standards, 1979;525.

    Google Scholar 

  18. de Kroon MGM, Slager CJ, Gussenhoven WJ, Serruys PW, Roelandt JRTC, Bom N. Cyclic changes of blood echogenicity in high-frequency ultrasound. Ultrasound Med Biol 1991; 17:723–728.

    Article  PubMed  Google Scholar 

  19. Foster FS, Obara H, Bloomfield T, Ryan LK, Lockwood GR. Ultrasound backscatter from blood in the 30 to 70 MHz frequency range. IEEE Ultrasonics Symp Proc 1994;3:1599–1602.

    Google Scholar 

  20. Pasterkamp G, van der Heiden MS, Post MJ, Ter Haar Romeny BM, Mali WPTM, Borst C. Discrimination of the intravascular lumen and dissections in a single 30-MHz us image: use of ‘confounding’ blood backscatter to advantage. Radiology 1993; 187:871–872.

    PubMed  CAS  Google Scholar 

  21. Mottley JG, Glueck RM, Pérez JE, Sobel BE, Miller JG. Regional differences in the cyclic variation of myocardial backscatter that parallel regional differences in contractile performance. J Acoust Soc Am 1984;76:1617–1623.

    Article  PubMed  CAS  Google Scholar 

  22. Rijsterborgh H, Mastik F, Lancée CT, Verdouw PD, Roelandt JRTC, Bom N. Ultrasound myocardial integrated backscatter signal processing: frequency domain versus time domain. Ultrasound Med Biol 1993;19:211–219.

    Article  PubMed  CAS  Google Scholar 

  23. Wickline SA, Miller JG, Rechia D, Sharkey AM, Bridal L, Christy D. Beyond intravascular imaging: quantitative ultrasonic tissue characterization of vascular pathology. IEEE Ultrasonics Symp 1994;3:1589–1597.

    Google Scholar 

  24. de Kroon MGM, van der Wal LF, Gussenhoven WJ, Bom N. Angle-dependent backscatter from the arterial wall. Ultrasound Med Biol 1993;17:121–126.

    Article  Google Scholar 

  25. Wilson LS, Neale ML, Talhami HE, Appleberg M. Preliminary results from attenuation-slope mapping of plaque using intravascular ultrasound. Ultrasound Med Biol 1994;20:529–542.

    Article  PubMed  CAS  Google Scholar 

  26. Ophir J, Cespedes I, Ponnekanti H, Yardi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging 1991; 13:111–134.

    Article  PubMed  CAS  Google Scholar 

  27. Foster FS, Ryan LK, Lockwood GR. High frequency ultrasound scanning of the arterial wall. In Roelandt JRTC, Gussenhoven EJ, Bom N, editors. Intravascular Ultrasound. Dordrecht: Kluwer Academic Publishers, 1993:91–108.

    Google Scholar 

  28. Talhami HE, Wilson LS, Neale ML. Spectral tissue strain: a new technique for imaging tissue strain using intravascular ultrasound. Ultrasound Med Biol 1994;20:759–772.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bom, N. et al. (1995). Intravascular ultrasound. In: Van Der Wall, E.E., Marwick, T.H., Reiber, J.H.C. (eds) Advances in Imaging Techniques in Ischemic Heart Disease. Developments in Cardiovascular Medicine, vol 171. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0365-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0365-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4163-8

  • Online ISBN: 978-94-011-0365-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics