Skip to main content

Catalytic Hydrogenation of Biological Membranes: The Effects on Membrane Physical State and Functions

  • Chapter
Aqueous Organometallic Chemistry and Catalysis

Part of the book series: NATO ASI Series ((ASHT,volume 5))

Abstract

About ten years ago our research group began a systematic study to understand more fully the diverse biological effects of fatty acid unsaturation. After assessing the particular advantages and disadvantages of each method to modify, and thereby define the exact role of membrane lipid unsaturation, we decided to apply the technique of homogeneous catalytic hydrogenation for answering many of specific questions raised in this subject. A vast number of soluble transition metal complexes have also been tested, but though they were able to catalyze the desired reaction, they did not fill the strict requirements for use in biomembrane hydrogenation (biocompatibility, high specific activity under physiological conditions, selectivity, stability, the possibility of removal after completion of reaction).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Joo, F., Balogh, N., Horvath, L.I, Filep, Gy., Horvath, I., and Vigh, L. (1991) Complex hydrogenation/oxidation reactions of the water-soluble hydrogenation catalyst, palladium-di(sodium alizarine-monosulfonate) and the know-how of homogeneous hydrogenation of lipids in isolated biomembranes and living cells. Anal. Biochem. 194, 34–40.

    Article  CAS  Google Scholar 

  2. Schlame, M., Horvath, L.I., and Vigh, L. (1990) Relation between lipid saturation and lipid-protein interaction in liver mitochondria modified by catalitycal hydrogenation with reference to cardiolipin molecular species. Biochem. J. 265(1),: 79–85.

    CAS  Google Scholar 

  3. Vigh, L., Joo, F., Droppa, M., Horvath, L.I., and Horvath, G. (1985) Modulation of chloroplast membrane lipids by homogenous catalytic hydrogenation. Eur. J. Biochem. 147,: 477–481.

    Article  CAS  Google Scholar 

  4. Horvath, I., Vigh, L., Pali, T., and Thompson, G.A. (1989) Effect of catalytic hydrogenation of Tetrahymena ciliary phospholipide fatty acids on ciliary phospholipase A activity. Biochim. Biophys. Acta 1002,409–412.

    Article  CAS  Google Scholar 

  5. Schlame, M., Horvath, I., Török, Zs., Horvath, L.I., and Vigh, L. (1990) Intramembraneous hydrogenation of mitochondrial lipids reduces the substrate availability but not the enzyme activity of endogeneous phospholipase A. The role of polyunsaturated phospholipid species. Biochim. Biophys. Acta 1045, 1–8.

    Article  CAS  Google Scholar 

  6. Vigh, L. and Joo, F. (1983) Modulation of membrane fluidity by catalytic hydrogenation affects the chilling susceptibility of the blue-green alga, Anacystis nidulans. FEBS Letters 162, 423–427.

    Article  CAS  Google Scholar 

  7. Vigh, L., Gombos, Z., and Joo, F. (1985) Selective modification of cytoplasmic membrane fluidity by catalytic hydrogenation provides evidence on its primary role in chilling susceptibility of the blue-green alga, Anacystis nidulans. FEBS Letters 191, 200–204.

    Article  CAS  Google Scholar 

  8. Vigh, L., Horvath, I., and Thompson, G.A. (1988) Recovery of Dunaliella salina cells following hydrogenation of lipids in specific membranes by a homogeneous palladium catalyst.Biochim. Biophys. Acta 937, 42–50.

    Article  CAS  Google Scholar 

  9. Thomas, P.G., Dominy, P.J., Vigh, L., Mansourian, A.R., Quinn, P.J., and Williams, W.P. (1986) Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic . hydrogenation of membrane lipids. Biochim. Biophys. Acta 849, 131–140.

    Article  CAS  Google Scholar 

  10. Vigh, L., Gombos, Z., Horvath, I., and Joo,F. (1989) Saturation of membrane lipids by hydrogenation induces thermal stability in chloroplast inhibiting the heat-dependent stimulation of photosystem Imediated electron transport. Biochim. Biophys. Acta 979, 361–364.

    Article  CAS  Google Scholar 

  11. Los, D., Horvath, I., Vigh, L., Murata, N. (1993) Low temperature dependent expression pf the desaturase desA in Synechocystis PCC 6803. FEBS Letters 318,: 57–60.

    Article  CAS  Google Scholar 

  12. Vigh, L., Los, D., Horvath, I., and Murata, N. (1993) The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechosystis PCC 6803. ?Proc. Natl. Acad. Sci. USA 90, 9090–9094.

    Article  CAS  Google Scholar 

  13. Maresca,B. and Cossins,A.R. (1993) Fatty feedback and fluidity. Nature 365, 606–607.

    Article  CAS  Google Scholar 

  14. Török, Zs., Szalontai, B., Joo,F., Wistrom, C.A., and Vigh, L. (1993)Homogeneous catalytic deuteration of fatty acyl chains as a tool to detect lipid phase transition in specific membrane domains: a fourier transform infrared spectroscopy study. Biochem. Biophys. Res. Com. 192, 518–524.

    Article  Google Scholar 

  15. Quinn, P.J., Joo, F., and Vigh, L. (1989) The role of unsaturated lipids in membrane structure and stability. Prog. Biophys. Mol. Biol. 53,: 71–103.

    Article  CAS  Google Scholar 

  16. Cameron,D.G., Martin,A., Moffatt,D.J. and Mantsch,H.H. (1985) Infrared spectroscopic study of the gel to liquid -crystal phase transition in live Acheoplasma laidlawii cells. Biochemistry 24, 4355–4359.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vígh, L., Joó, F. (1995). Catalytic Hydrogenation of Biological Membranes: The Effects on Membrane Physical State and Functions. In: Horváth, I.T., Joó, F. (eds) Aqueous Organometallic Chemistry and Catalysis. NATO ASI Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0355-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0355-8_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4158-4

  • Online ISBN: 978-94-011-0355-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics