Skip to main content

Principles of Antibody Catalysis

  • Chapter
Supramolecular Stereochemistry

Part of the book series: NATO ASI Series ((ASIC,volume 473))

  • 215 Accesses

Abstract

A wide range of chemical transformations can be catalyzed by antibody molecules elicited with rationally designed transition state analogs. The development of catalytic antibodies consequently represents one of the most versatile and general strategies for creating new enzymes to emerge in the last several years. Recent advances in the production and characterization of these agents are reviewed.

This contribution originally appeared in the NATO ASI series volume entitled “Chemical Synthesis: Gnosis to Prognosis” (C. Chatgilialoglu and V. Snieckus, eds.), 1995.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. This contribution originally appeared in the NATO ASI series volume entitled “Chemical Synthesis: Gnosis to Prognosis” (C. Chatgilialoglu and V. Snieckus, eds.), 1995.

    Google Scholar 

  2. Pressman, D.; Grossberg, A. (1968) The Structrual Basis of Antibody Specificity, Benjamin, New York.

    Google Scholar 

  3. Nisonoff, A., Hopper, J., and Spring, S. (1975) The Antibody Molecule, Academic Press, New York.

    Google Scholar 

  4. Kabat, E.A. (1976) Structural Concepts in Immunology and Immunochemistry, Holt, Reinhart and Winston, New York.

    Google Scholar 

  5. Alt, F.W., Blackwell, T.K., and Yancopoulos, G.D. (1987) Development of the primary antibody repertoire, Science 238, 1079.

    Article  CAS  Google Scholar 

  6. Rajewsky, K., Förster, I., and Cumang, A. (1987) Evolutionary and somatic selection of the antibody repertoire in the mouse, Science 238, 1088.

    Article  CAS  Google Scholar 

  7. Lerner, R.A., Benkovic, S.J., and Schultz, P.G. (1991) At the crossroads of chemistry and immunology: Catalytic antibodies, Science 252, 659.

    Article  CAS  Google Scholar 

  8. Davies, D.R., Padlan, E.A., and Sheriff, S. (1990) Antibody-antigen complexes, Ann. Rev. Biochem. 59, 439.

    Article  CAS  Google Scholar 

  9. Wilson, I.A. and Stanfield, R.L. (1993) Antibody-antigen interactions, Current Opinion in Struct. Biol 3, 113.

    Article  CAS  Google Scholar 

  10. Jencks, W.P. (1969) Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, p. 288.

    Google Scholar 

  11. Pauling, L. (1948) Chemical achievement and hope for the future, Am. Sci. 36, 51.

    CAS  Google Scholar 

  12. Andrews, P.R., Smith, G.D., and Young, I.G. (1973) Transition-state stabilization and enzymic catalysis. Kinetic and molecular orbital studies of the rearrangement of chorismate to prephenate, Biochemistry 12, 3492.

    Article  CAS  Google Scholar 

  13. Sogo, S.G., Widlanski, T.S., Hoare, J.H., Grimshaw, C.E., Berchtold, G.A., and Knowles, J.R. (1984) Stereochemistry of the rearrangement of chorismate to prephenate: Chorismate mutase involves a chair transition state, J Am. Chem. Soc. 106, 2701.

    Article  CAS  Google Scholar 

  14. Andrews, P.R., Cain, E.N., Rizardo, E., and Smith, G.D. (1977) Rearrangement of chorismate to prephenate. Use of chorismate mutase inhibitors to define the transition state structure, Biochemistry 16, 4848.

    Article  CAS  Google Scholar 

  15. Addadi, L., Jaffe, E.K., and Knowles, J.R. (1984) Secondary tritium isotope effects as probes of the enzymic and nonenzymic conversion of chorismate to prephenate, Biochemistry 22, 4494.

    Article  Google Scholar 

  16. Copley, S.D. and Knowles, J.R. (1987) The conformational equilibrium of chorismate in solution: Implications for the mechanism of the nonenzymic and the enzyme-catalyzed rearrangement of chorismate to prephenate, J. Am. Chem. Soc. 109, 5008.

    Article  CAS  Google Scholar 

  17. Severence, D.L. and Jorgensen, W.L. (1992) Effects of hydration on the Claisen rearrangement of allyl vinyl ether from computer simulations, J. Am. Chem. Soc. 114, 10966.

    Article  Google Scholar 

  18. Westheimer, F.H. (1962) Mechanisms related to enzyme catalysis, Adv. Enzymol. 24, 441.

    CAS  Google Scholar 

  19. Görisch, J. (1978) On the mechanism of the chorismate mutase reaction, Biochemistry 17, 3700.

    Article  Google Scholar 

  20. Bartlett, P.A., Nakagawa, Y., Johnson, C.R., Reich, S.H., and Luis, A. (1988) Chorismate mutase inhibitors: Synthesis and evaluation of some potential transition-state analogues, J. Org. Chem. 53, 3195.

    Article  CAS  Google Scholar 

  21. Hilvert, D., Carpenter, S.H., Nared, K.D., and Auditor, M.-T.M. (1988) Catalysis of concerted reactions by antibodies: The Claisen rearrangement, Proc. Natl. Acad. Sci. USA 85, 4953.

    Article  CAS  Google Scholar 

  22. Jackson, D.Y., Jacobs, J.W., Sugasawara, R., Reich, S.H., Bartlett, P.A., and Schultz, P.G. (1988) An antibody-catalyzed Claisen rearrangement, J. Am. Chenu Soc. 110, 4841.

    Article  CAS  Google Scholar 

  23. Hilvert, D. and Nared, K.D. (1988) Stereospecific Claisen rearrangement catalyzed by an antibody, J. Am Chem. Soc. 110, 5593.

    Article  CAS  Google Scholar 

  24. Jackson, D.Y., Liang, M.N., Bartlett, P.A. and Schultz, P.G. (1992) Activation parameters and stereochemistry of an antibody-catalyzed Claisen rearrangement, Angew. Chem Int. Ed. Engl. 31, 182.

    Article  Google Scholar 

  25. Campbell, A.P., Tarasow, T.M., Massefski, W., Wright, P.E., and Hilvert, D. (1993) Binding of a high-energy substrate conformer in antibody catalysis, Proc. Natl. Acad Sci. USA 90, 8663.

    Article  CAS  Google Scholar 

  26. Haynes, M.R., Stura, E.A., Hilvert, D., and Wilson, I.A. (1994) Routes to catalysis: Structure of a catalytic antibody and comparison with its natural counterpart, Science 263, 646.

    Article  CAS  Google Scholar 

  27. Chook, Y.M., Ke, H., and Lipscomb, W.N. (1993) Crystal structures of the monofunctional chorismate mutase from Bacillus subtilis and its complex with a transition state analog, Proc. Natl. Acad. Sci. USA 90, 8600.

    Article  CAS  Google Scholar 

  28. Dunitz, J. (1994) The entropie cost of bound water in crystals and biomolecules, Science 264, 670.

    Article  CAS  Google Scholar 

  29. Garrard, L.J. and Zhukovsky, E.A. (1992) Antibody expression in bacteriophage systems: The future of monoclonal antibodies? Current Opinion in Biotechnology 3, 474.

    Article  CAS  Google Scholar 

  30. Tang, Y., Hicks, J.B., and Hilvert, D. (1991) In vivo catalysis of a metabolically essential reaction by an antibody, Proc. Natl. Acad. Sci. USA 88, 8784.

    Article  CAS  Google Scholar 

  31. Stewart, J.D., Liotta, L.J., and Benkovic, S.J. (1993) Reaction mechanisms displayed by catalytic antibodies, Acc. Chem Res. 26, 396.

    Article  CAS  Google Scholar 

  32. Golinelli-Pimpaneau, B., Gigant, B., Bizebard, T., Navaza, J., Saludjian, P., Zemel, R., Tawfik, D.S., Eshhar, Z., Green, B.S., and Knossow, M. (1994) Crystal structure of a catalytic antibody Fab with esterase-like activity, Structure 2, 175.

    Article  CAS  Google Scholar 

  33. Stewart, J.D., Roberts, V.A., Thomas, N.R., Getzoff, E.D., and Benkovic, S.J. (1994) Site-directed mutagenesis of a catalytic antibody: An arginine and a histidine residue play key roles, Biochemistry 33, 1994, and references therein.

    Google Scholar 

  34. Janda, K.D., Schloeder, D., Benkovic, S.J., and Lerner, R.A. (1988) Induction of an antibody that catalyzes the hydrolysis of an amide bond, Science 241, 1188.

    Article  CAS  Google Scholar 

  35. Lewis, C., Krämer, T., Robinson, S., and Hilvert, D. (1991) Medium effects in antibody-catalyzed reactions, Science 253, 1019.

    Article  CAS  Google Scholar 

  36. Kemp, D.S. and Paul, K.G. (1975) The physical organic chemistry of benzisoxazoles. III. The mechanism and the effects of solents on rates of decarboxylation of benzisoxazole-3-carboxylic acids, J. Am Chem. Soc. 97, 7305.

    Article  CAS  Google Scholar 

  37. Tarasow, T.M., Lewis, C., and Hilvert, D. (1994). Investigation of medium effects in a family of decarboxylase antibodies. J. Am. Chem. Soc. 116, 7959.

    Article  CAS  Google Scholar 

  38. Casey, M.L., Kemp, D.S., Paul, K.G., and Cox, D.D. (1973) The physical organic chemistry of benzisoxazoles. I. The mechanism of the base-catalyzed decomposition of benzisoxazoles, J. Org. Chem. 38, 2294.

    Article  CAS  Google Scholar 

  39. Thorn, S. N., Daniels, R. G., Auditor, M.-T. M. and Hilvert, D. (1995). Large rate accelerations in antibody catalysis by strategic use of haptenic charge. Nature 373, 228.

    Article  CAS  Google Scholar 

  40. Hilvert, D., Hill, K.W., Nared, K.D., and Auditor, M.-T.M. (1989) Antibody catalysis of a Diels-Alder reaction, J. Am. Chem. Soc. 111, 9261.

    Article  CAS  Google Scholar 

  41. Braisted, A.C. and Schultz, P.G. (1990) An antibody-catalyzed bimolecular Diels-Alder reaction, J. Am. Chem. Soc. 112, 7430.

    Article  CAS  Google Scholar 

  42. Gouverneur, V.E., Houk, K.N., Pascual-Teresa, B., Beno, B., Janda, K.D., and Lerner, R.A. (1993) Control of the exo and endo pathways of the Diels-Alder reaction by antibody catalysis. Science 262, 204.

    Article  CAS  Google Scholar 

  43. Hilvert, D. (1993). Antibody catalysis of carbon-carbon bond formation and cleavage. Acc. Chem. Res. 26, 552.

    Article  CAS  Google Scholar 

  44. Arevalo, J.H., Stura, E.A., Taussig, M.J., and Wilson, I.A. (1993) Three-dimensional structure of an anti-steroid Fab’ and progesterone-Fab’ complex, J. Mol. Biol. 231, 103.

    Article  CAS  Google Scholar 

  45. MacBeath, G. and Hilvert, D. (1994) Monitoring catalytic activity by immunoassay: Implications for screening, J. Am. Chem. Soc. 116, 6101.

    Article  CAS  Google Scholar 

  46. Cravatt, B.F., Ashley, J.A., Janda, K.D., Boger, D.L., and Lerner, R.A. (1994) Crossing extreme mechanistic barriers by antibody catalysis: Syn elimination to a cis olefin, J. Am. Chem. Soc. 116, 6013.

    Article  CAS  Google Scholar 

  47. Li, T., Janda, K.D., Ashley, J.A., and Lerner, R.A. (1994) Antibody catalyzed cationic cyclization, Science 264, 1289.

    Article  CAS  Google Scholar 

  48. Sinha, S.C., Keinan, E., and Reymond, J.-L. (1993) Antibody-catalyzed reversal of chemoselectivity, Proc. Natl. Acad. Sci. USA 90, 11910.

    Article  CAS  Google Scholar 

  49. Hsieh, L.C., Yonkovich, S., Kochersperger, L., and Schultz P.G. (1993) Controlling chemical reactivity with antibodies, Science 260, 337.

    Article  CAS  Google Scholar 

  50. Janda, K.D., Shevlin, C.G., and Lerner, R.A. (1993) Antibody catalysis of a disfavored chemical transformation, Science 259, 490.

    Article  CAS  Google Scholar 

  51. Na, J., Houk, K.N., Shevlin, C.G., Janda, K.D., and Lerner, R.A. (1993) The energetic advantage of 5-exo versus 6-endo epoxide openings: A preference overwhelmed by antibody catalysis, J. Am. Chenu. Soc. 115, 8453.

    Article  CAS  Google Scholar 

  52. Reymond, J.-L., Reber, J.-L., and Lerner, R.A. (1994) Enantioselective, multigram-scale synthesis with a catalytic antibody, Angew. Chem. Int. Ed. Engl. 33, 475.

    Article  Google Scholar 

  53. Tramontano, A., Janda, K.D., and Lerner, R.A. (1986) Catalytic antibodies, Science 234, 1566.

    Article  CAS  Google Scholar 

  54. Pollack, S.J., Jacobs, J.W., and Schultz, P.G. (1986) Selective chemical catalysis by an antibody, Science 234, 1570.

    Article  CAS  Google Scholar 

  55. Iverson, B.L. and Lerner, R.A. (1989) Sequence-specific peptide cleavage catalyzed by an antibody, Science 243, 1184.

    Article  CAS  Google Scholar 

  56. Tawfik, D.S., Green, B.S., Chap, R., Sela, M., and Eshhar, Z. (1993) catELISA: A facile general route to catalytic antibodies, Proc. Natl. Acad. Sci. USA 90, 373.

    Article  CAS  Google Scholar 

  57. Lesley, S.A., Patten, P.A., and Schultz, P.G. (1993) A genetic approach to the generation of antibodies with enhanced catalytic activities. Proc. Natl. Acad. Sci. USA 90, 1160.

    Article  CAS  Google Scholar 

  58. Fischer, E. (1894) Einfluss der Configuration auf die Wirkung der Enzyme, Ber. Dt. Chem. Ges. 27, 2985.

    Article  CAS  Google Scholar 

  59. Eschenmoser, A. (1994) One hundred years lock-and-key principle. Angew. Chem. Int. Ed. Engl. 33, 2363.

    Article  Google Scholar 

  60. Lichtenthaler, F.W. (1994) 100 Years “Schlüssel-Schloss-Prinzip”: What made Emil Fischer use this analogy? Angew. Chem. Int. Ed. Engl. 33, 2364.

    Article  Google Scholar 

  61. Koshland, D.E., Jr. (1994) The Key-Lock Theory and the Induced Fit Theory. Angew. Chem. Int. Ed. Engl. 33, 2375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hilvert, D. (1995). Principles of Antibody Catalysis. In: Siegel, J.S. (eds) Supramolecular Stereochemistry. NATO ASI Series, vol 473. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0353-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0353-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4157-7

  • Online ISBN: 978-94-011-0353-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics