Skip to main content

Fluorescent staining of microbes for total direct counts

  • Chapter
Molecular Microbial Ecology Manual

Abstract

Bacteria and fungi are the primary decomposers of dead organic matter and play an important role in food webs and nutrient cycling. In studies into the effects of management and pollution on the structure and functioning of ecosystems, reliable estimates of microbial numbers, biomass and activity are needed. Since 1970 epifluorescence microscopy has become the major technique for direct enumeration of microbes in water and soil. In principle, a known amount of water or homogenized soil suspension is placed on a known area of a microscopic slide, the microorganisms are stained with a fluorescent dye, and numbers are tallied with a microscope. Biovolumes and biomass can be estimated from lengths and widths. The frequency of dividing cells (FDC), i.e., the percentage of cells showing an invagination, can be used as an index of the in situ specific growth rate of bacteria in water [17] and in soil [8]. Metabolically active fungal hyphae can be estimated after staining with fluorescein diacetate (FDA) which becomes fluorescent when it is enzymatically hydrolyzed [32]. The FDA method has been used also for bacteria. However, not all bacteria are able to take up FDA. The same limitation applies to other viability probes for bacteria [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson JR, Slinger JM (1975a) Europium chelate and fluorescent brightener staining of soil propagules and their photomicrographic counting-I. Methods. Soil Biol Biochem 7: 205–209.

    Article  Google Scholar 

  2. Anderson JR, Slinger JM (1975b) Europium chelate and fluorescent brightener staining of soil propagules and their photomicrographic counting-II. Efficiency. Soil Biol Biochem 7: 211–215.

    Article  Google Scholar 

  3. Arndt-Jovin DJ, Jovin TM (1989) Fluorescence labelling and microscopy of DNA. In: Taylor DL, Wang YL (eds) Methods in Cell Biology, Vol 30. Fluorescence Microscopy of Living Cells in Culture. Part B. Quantitative fluorescence microscopy-imaging and spectroscopy, pp. 417–448. Academic Press, San Diego.

    Chapter  Google Scholar 

  4. Babiuk LA, Paul EA (1970) The use of fluorescein isothiocyanate in the determination of the bacterial biomass of grassland soil. Can J Microbiol 16: 57–62.

    Article  PubMed  CAS  Google Scholar 

  5. Bakken LR, Olsen RA (1983) Buoyant densities and dry-matter contents of micro-organisms: conversion of a measured biovolume into biomass. Appl Environ Microbiol 45: 1188–1195.

    PubMed  CAS  Google Scholar 

  6. Bjørnsen PK (1986) Automatic determination of bacterioplankton biomass by image analysis. Appl Environ Microbiol 51: 1199–1204.

    PubMed  Google Scholar 

  7. Blakeslee D, Baines MG (1976) Immunofluorescence using dichlorotriazinylamino- fluorescein (DTAF). I. Preparation and fractionation of labelled IgG. J Immunol Methods 13: 305–320.

    CAS  Google Scholar 

  8. Bloem J, de Ruiter PC, Koopman GJ, Lebbink G, Brussaard L (1992a) Microbial numbers and activity in dried and rewetted arable soil under integrated and conventional management. Soil Biol Biochem 24: 655–665.

    Article  Google Scholar 

  9. Bloem J, van Mullem DK, Bolhuis PR (1992b) Microscopic counting and calculation of species abundances and statistics in real time with an MS-DOS personal computer, applied to bacteria in soil smears. J Microbiol Methods 16: 203–213.

    Article  Google Scholar 

  10. Bloem J, Bolhuis PR, Veninga MR, Wieringa J (1995a) Microscopic methods for counting bacteria and fungi in soil. In: Alef K, Nannipieri P (eds) Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London, in press.

    Google Scholar 

  11. Bloem J, Lebbink G, Zwart KB, Bouwman LA, Burgers SLGE, de Vos JA, de Ruiter PC (1994) Dynamics of microorganisms, microbivores and nitrogen mineralization in winter wheat fields under conventional and integrated management. Agric Ecosyst Environ 51: 129–143.

    Article  Google Scholar 

  12. Bloem J, Veninga MR, Shepherd J (1995b) Fully automatic determination of soil bacterium numbers, cell volumes and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Appl Environ Microbiol 61: 926–936.

    PubMed  CAS  Google Scholar 

  13. Davidson RS, Hilchenbach MM (1990) The use of fluorescent probes in immuno- chemistry. Photochem Photobiol 52: 431–438.

    Article  PubMed  CAS  Google Scholar 

  14. Frankland JC, Dighton J, Boddy L (1990) Methods for studying fungi in soil and forest litter. In: Grigorova R, Norris JR (eds) Methods in Microbiology. Volume 22. Techniques in Microbial Ecology, pp. 343–404. Academic Press, London.

    Google Scholar 

  15. Fry, J.C. 1990. Direct methods and biomass estimation. In: Grigorova R, Norris JR (eds) Methods in Microbiology. Volume 22. Techniques in Microbial Ecology. Academic Press, London, pp. 41–85.

    Google Scholar 

  16. Gray, T.R.G. 1990. Methods for studying the microbial ecology of soil. In: Grigorova R, Norris JR (eds) Methods in Microbiology. Volume 22. Techniques in Microbial Ecology, pp. 309–342. Academic Press, London.

    Google Scholar 

  17. Hagström A, Larsson U, Horstedt P, Normark S (1979) Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl Environ Microbiol 37: 805–812.

    PubMed  Google Scholar 

  18. Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33: 1225–1228.

    PubMed  CAS  Google Scholar 

  19. Krambeck C, Krambeck H-J, Overbeck J (1981) Microcomputer assisted biomass determination of plankton bacteria on scanning electron micrographs. Appl Environ Microbiol 42: 142–149.

    PubMed  CAS  Google Scholar 

  20. Kroer N (1994) Relationships between biovolume and carbon and nitrogen content of bacterioplankton. FEMS Microbiol Ecol 13: 217–224.

    Article  Google Scholar 

  21. Lee S, Fuhrman JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol 53: 1298–1303.

    PubMed  CAS  Google Scholar 

  22. Lebaron P, Trousellier M, Got P (1994) Accuracy of epifluorescence microscopy counts for direct estimates of bacterial numbers. J Microbiol Methods 19: 89–94.

    Article  Google Scholar 

  23. Morgan P, Cooper CJ, Battersby NS, Lee SA, Lewis ST, Machin TM, Graham SC, Watkinson RJ (1991) Automated image analysis method to determine fungal biomass in soils and on solid matrices. Soil Biol Biochem 23: 609–616.

    Article  Google Scholar 

  24. Norland S, Heldal M, Tumyr O (1987) On the relation between dry matter and volume of bacteria. Microb Ecol 13: 95–101.

    Article  Google Scholar 

  25. Paul, JH (1982) Use of Hoechst dyes 33258 and 33342 for enumeration of attached and planktonic bacteria. Appl Environ Microbiol 43: 939–944.

    PubMed  CAS  Google Scholar 

  26. Ploem JS, Tanke HJ (1987) Introduction to Fluorescence Microscopy. Royal Microscopical Society, Microscopy Handbooks 10. Oxford University Press, Oxford.

    Google Scholar 

  27. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25: 943–948.

    Article  Google Scholar 

  28. Schallenberg M, Kalff J, Rasmussen JB (1989) Solutions to problems in enumerating sediment bacteria by direct counts. Appl Environ Microbiol 55: 1214–1219.

    PubMed  CAS  Google Scholar 

  29. Schmidt EL, Paul EA (1982) Microscopic methods for soil micro-organisms. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. 2nd edition, pp. 803–814. American Society of Agronomy, Madison WI, USA.

    Google Scholar 

  30. Sherr BF, Sherr EB, Fallon RD (1987) Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol 53: 958–965.

    PubMed  CAS  Google Scholar 

  31. Sieracki ME, Johnson PW, Sieburth J McN (1985) Detection, enumeration, and sizing of planktonic bacteria by image-analyzed epifluorescence microscopy. Appl Environ Microbiol 49: 799–810.

    PubMed  CAS  Google Scholar 

  32. Söderström BE (1977) Vital staining of fungi in pure cultures and in soil with fluorescein diacetate. Soil Biol Biochem 9: 59–63.

    Article  Google Scholar 

  33. Suzuki M, Sherr EB, Sherr BF (1993) DAPI direct counting underestimates bacterial abundances and average cell size compared to AO direct counting. Limnol Oceanogr 38: 1566–1570.

    Article  Google Scholar 

  34. Taylor DL, Salmor ED (1989) Basic fluorescence microscopy. In: Taylor DL, Wang YL (eds) Methods in Cell Biology. Volume 29. Fluorescence Microscopy of Living Cells in Culture. Part A. Fluorescent Analogs, Labelling Cells and Basic Microscopy, pp. 207–237. Academic Press, San Diego.

    Google Scholar 

  35. Turley CM, Hughes DJ (1994) The effect of storage temperature on the enumeration of epifluorescence-detectable bacterial cells in preserved sea-water samples. J Mar Biol Ass UK 74: 259–262.

    Article  Google Scholar 

  36. Van Veen JA, Paul EA (1979) Conversion of biovolume measurements of soil organisms grown under various moisture tensions, to biomass and their nutrient content. Appl Environ Microbiol 37: 686–692.

    PubMed  Google Scholar 

  37. West, AW (1988) Specimen preparation, stain type, and extraction and observation procedures as factors in the estimation of soil mycelial lengths and volumes by light microscopy. Biol Fertil Soils 7: 88–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bloem, J. (1995). Fluorescent staining of microbes for total direct counts. In: Akkermans, A.D.L., Van Elsas, J.D., De Bruijn, F.J. (eds) Molecular Microbial Ecology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0351-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0351-0_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4156-0

  • Online ISBN: 978-94-011-0351-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics