Skip to main content

Nonsmooth critical point theory and quasilinear elliptic equations

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 472))

Abstract

These lectures are devoted to a generalized critical point theory for nonsmooth functionals and to existence of multiple solutions for quasilinear elliptic equations. If f is a continuous function defined on a metric space, we define the weak slope |df|(u), an extended notion of norm of the Fréchet derivative. Generalized notions of critical point and Palais-Smale condition are accordingly introduced. The Deformation Theorem and the Noncritical Interval Theorem are proved in this setting. The case in which f is invariant under the action of a compact Lie group is also considered. Mountain pass theorems for continuous functionals are proved. Estimates of the number of critical points of f by means of the relative category are provided. A partial extension of these techniques to lower semicontinuous functionals is outlined. The second part is mainly concerned with functionals of the Calculus of Variations depending quadratically on the gradient of the function. Such functionals are naturally continuous, but not locally Lipschitz continuous on H 10 . When f is even and suitable qualitative conditions are satisfied, we prove the existence of infinitely many solutions for the associated Euler equation. The regularity of such solutions is also studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Fund. Anal. 14 (1973), 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Arcoya and L. Boccardo, Critical points for multiple integrals of the Calculus of Variations, preprint, 1994.

    Google Scholar 

  3. A. Bensoussan, L. Boccardo and F. Murat, On a nonlinear partial differential equation having natural growth and unbounded solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 347–364.

    MathSciNet  MATH  Google Scholar 

  4. L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), 581–597.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Boccardo, F. Murat and J. P. Puel, Existence de solutions non bornees pour certaines équations quasi-linéaires, Portugal. Math. 41 (1982), 507–534.

    MathSciNet  MATH  Google Scholar 

  6. A. Bonnet, Un lemme de deformation sur une sous-variete de classe C1, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 1263–1269.

    MathSciNet  MATH  Google Scholar 

  7. G. E. Bredon, Introduction to Compact Transformation Groups, Pure Appl. Math. 46 Academic Press, New York - London 1972.

    MATH  Google Scholar 

  8. H. Brézis and F. E. Browder, Sur une propriété des espaces de Sobolev, C. R. Acad. Sci. Paris Sér. A 287 (1978), 113–115.

    MATH  Google Scholar 

  9. H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potential, J. Math. Pures Appl. 58 (1979), 137–151.

    MathSciNet  MATH  Google Scholar 

  10. H. Brézis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Canino, Multiplicity of solutions for quasilinear elliptic equations, preprint, Dip. Mat. Univ. Calabria, 1993.

    Google Scholar 

  12. A. Canino and U. Perri, Constrained problems in Banach spaces with an application to variational inequalities, Nonlinear Anal., in press.

    Google Scholar 

  13. K. C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102–129.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. C. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Progr. Nonlinear Differential Equations Appl. 6, Birkhäuser, Boston 1993.

    Book  MATH  Google Scholar 

  15. F. H. Clarke, Optimization and Nonsmooth Analysis, Canad. Math. Soc. Ser. Monographs Adv. Texts, Wiley, New York 1983.

    MATH  Google Scholar 

  16. J.-N. Corvellec, A general approach to the min-max principle, preprint, Dip. Mat. Univ. Pisa, 1992.

    Google Scholar 

  17. J.-N. Corvellec, A note on coercivity of lower semicontinuous functionals, preprint, 1994.

    Google Scholar 

  18. J.-N. Corvellec, Morse theory for continuous functionals, J. Math. Anal. Appl, in press.

    Google Scholar 

  19. J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal. 1 (1993), 151–171.

    MathSciNet  MATH  Google Scholar 

  20. E. De Giorgi, A. Marino and M. Tosques, Problemi di evoluzione in spazi metrici e curve di massima pendenza, Atti Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Natur. (8) 68 (1980), 180–187.

    MATH  Google Scholar 

  21. M. Degiovanni, Variational methods in bifurcation problems for variational inequalities, Autumn School on Variational Inequalities (Paseky, 1992), Faculty of Mathematics and Physics, Charles University, Prague, 1993, 27–51.

    Google Scholar 

  22. M. Degiovanni and S. Lancelotti, Perturbations of even nonsmooth functionals, Differential Integral Equations, in press.

    Google Scholar 

  23. M. Degiovanni and M. Marzocchi, A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. (4) 167 (1994), 73–100.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Fadell, Lectures in Cohomological Index Theories of G-Spaces With Applications to Critical Point Theory, Raccolta Sem. Dip. Mat. Univ. Calabria 6, Cosenza, 1985.

    Google Scholar 

  25. G. Founder and M. Willem, Multiple solutions of the forced double pendulum equation, in: Colloque franco-québecois (Perpignan, 1987), Ann. Inst. H. Poincaré Anal. Non Linéaire 6 Suppl. (1989), 259–281.

    MATH  Google Scholar 

  26. J. Frehse, A note on the Hölder continuity of solutions of variational problems, Abh. Math. Sem. Univ. Hamburg 43 (1975), 59–63.

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Ghoussoub, Location, multiplicity and Morse indices of min-max critical points, J. Reine Angew. Math. 417 (1991), 27–76.

    MathSciNet  MATH  Google Scholar 

  28. N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 321–330.

    MathSciNet  MATH  Google Scholar 

  29. S. Hildebrandt, Nonlinear elliptic systems and harmonic mappings, in: Proc. 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol. 1, Science Press, Beijing 1982, 481–615.

    Google Scholar 

  30. A. Ioffe and E. Schwartzman, Metric critical point theory 1. Morse regularity and nomotopic stability of a minimum, preprint, 1994.

    Google Scholar 

  31. G. Katriel, Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 189–209.

    MathSciNet  MATH  Google Scholar 

  32. O. A. Ladyzhenskaya and N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Nauka Press, Moscow 1964;

    MATH  Google Scholar 

  33. O. A. Ladyzhenskaya and N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations Academic Press, New York 1968.

    MATH  Google Scholar 

  34. S. Lancelotti, Perturbations of symmetric constraints in eigenvalue problems for variational inequalities, preprint, Sem. Mat. Brescia, 1994.

    Google Scholar 

  35. R. H. Martin Jr., Nonlinear Operators and Differential Equations in Banach Spaces, Pure Appl. Math., Wiley, New York 1976.

    MATH  Google Scholar 

  36. M. Marzocchi, Multiple solutions of quasilinear equations involving an area-type term, preprint, Sem. Mat. Brescia, 1994.

    Google Scholar 

  37. M. Morse, Functional Topology and Abstract Variational Theory, Memorial des Sci. Math. 92, Gauthier-Villars, Paris 1939.

    MATH  Google Scholar 

  38. R. S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  39. R. S. Palais, Critical point theory and the minimax principle, Global Analysis (Berkeley 1968) Proc. Sympos. Pure Math. 15, Amer. Math. Soc, Providence, RI 1970, 185–212.

    Google Scholar 

  40. P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, RI 1986.

    Google Scholar 

  41. M. Reeken, Stability of critical points under small perturbations, Part I: Topological theory, Manuscripta Math. 7 (1972), 387–411.

    Article  MathSciNet  MATH  Google Scholar 

  42. N. K. Ribarska, Ts. Y. Tsachev and M. I. Krastanov, Deformation lemma, Ljusternik-Schnirelmann theory and mountain pass theorem on C 1-Finsler manifolds, preprint, 1993.

    Google Scholar 

  43. G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Sém. Math. Sup. 16, Presses Univ. de Montréal, 1966.

    MATH  Google Scholar 

  44. M. Struwe, Multiple solutions of differential equations without the Palais-Smale condition, Math. Ann. 261 (1982), 399–412.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Struwe, Quasilinear elliptic eigenvalue problems, Comment. Math. Helv. 58 (1983), 509–527.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Struwe, Variational Methods, Springer-Verlag, Berlin 1990.

    MATH  Google Scholar 

  47. A. Szulkin, Minimax principles for lower semi continuous functions and application to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), 77–109.

    MathSciNet  MATH  Google Scholar 

  48. A. Szulkin, Ljusternik-Schnirelmann theory on C 1-manifolds, Ann. Inst. H. Poincaré Anal. Non Lineairé 5 (1988), 119–139.

    MathSciNet  MATH  Google Scholar 

  49. A. Szulkin, A relative category and applications to critical point theory for strongly indefinite functionals, Nonlinear Anal. 15 (1990), 725–739.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Canino, A., Degiovanni, M. (1995). Nonsmooth critical point theory and quasilinear elliptic equations. In: Granas, A., Frigon, M., Sabidussi, G. (eds) Topological Methods in Differential Equations and Inclusions. NATO ASI Series, vol 472. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0339-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0339-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4150-8

  • Online ISBN: 978-94-011-0339-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics