Advertisement

New Inhalational Anesthetics in Infants and Children

  • J. Lerman
Chapter
Part of the Developments in Critical Care Medicine and Anesthesiology book series (DCCA, volume 30)

Abstract

The methyl ethyl ethers have proven to be a successful series of anesthetics because of several characteristics: molecular stability, non-flammability, lack of arrhythmogenicity, lack of neuronal excitation, cardiovascular stability, large lethal-to-anesthetic concentration ratio, and minimal end-organ effects (1, 2). In this lecture, I shall review the pharmacology of the two new anesthetics, desflurane and sevoflurane, with a particular view to their future roles in pediatric anesthesia.

Keywords

Soda Lime Inhalational Anesthetic Sevoflurane Anesthesia Inorganic Fluoride Inhalational Induction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Terrell RC: Physical and chemical properties of anesthetic agents. Br J Anaesth 56:3S–7S, 1984PubMedCrossRefGoogle Scholar
  2. 2.
    Yasuda N, Targ AG, Eger EI II: Solubility of 1–653, sevoflurane, isoflurane and halothane in human tissues. Anesth Analg 69:370–373, 1989PubMedCrossRefGoogle Scholar
  3. 3.
    Yasuda N, Lockhart S, Eger EI II et al: Comparison of kinetics of sevoflurane and isoflurane in humans. Anesth Analg 72:316–324, 1991PubMedCrossRefGoogle Scholar
  4. 4.
    Koblin DD, Eger I. II, Johnson BH et al: 1–653 resists degradation in rats. Anesth Analg 67:534–538, 1988PubMedCrossRefGoogle Scholar
  5. 5.
    Wallin RF, Regan BM, Napoli MD et al: Sevoflurane: A new inhalational anesthetic agent. Anesth Analg 54:758–766, 1975PubMedCrossRefGoogle Scholar
  6. 6.
    Halsey MJ: Investigations on isoflurane, sevoflurane and other experimental anesthetics. Br J Anaesth 53:435–475, 1981CrossRefGoogle Scholar
  7. 7.
    Malviya S, Lerman J: The blood/gas solubilities of sevoflurane, isoflurane, and halothane and serum constituent concentrations in neonates and adults. Anesthesiology 72:793–796, 1990PubMedCrossRefGoogle Scholar
  8. 8.
    Holaday PA, Smith FR: Clinical characteristics and biotransformation of sevoflurane in healthy human volunteers. Anesthesiology 54:100–106, 1981PubMedCrossRefGoogle Scholar
  9. 9.
    Naito Y, Tamai S, Shingu K et al: Comparison between sevoflurane and halothane for pediatric ambulatory anesthesia. Br J Anaesth 67:387–389, 1991PubMedCrossRefGoogle Scholar
  10. 10.
    Lerman J, Sikich N, Kleinman S et al: The pharmacology of sevoflurane in infants and children. Anesthesiology 80:814–824, 1994PubMedCrossRefGoogle Scholar
  11. 11.
    Shiraishi Y, Ikeda K: Uptake and biotransformation of sevoflurane in humans: A comparative study of sevoflurane with halothane, enflurane, and isoflurane. J Clin Anesth 2:381–386, 1990PubMedCrossRefGoogle Scholar
  12. 12.
    Frink Jr. EJ, Malan TP, Isner RJ et al: Renal concentrating function with prolonged sevoflurane or enflurane anesthesia in volunteers. Anesthesiology 80:1019–1025, 1994PubMedCrossRefGoogle Scholar
  13. 13.
    Hanaki C, Fujii K, Morio M et al: Decomposition of sevoflurane by soda lime. Hiroshima J Med Sci 36:61–67, 1987PubMedGoogle Scholar
  14. 14.
    Lerman J: Pharmacology of inhalational anesthetics in infants and children. Pediatr Anesth 2:191–203, 1992CrossRefGoogle Scholar
  15. 15.
    Taylor RH, Lerman J: Minimum alveolar concentration of desflurane and hemodynamic responses in neonates, infants and children. Anesthesiology 75:975–979, 1991PubMedCrossRefGoogle Scholar
  16. 16.
    Fisher DM, Zwass MS: MAC of desflurane in 60% nitrous oxide in infants and children. Anesthesiology 76:354–356, 1992PubMedCrossRefGoogle Scholar
  17. 17.
    Murray DJ, Mehta MP, Forbes RB et al: Additive contribution of nitrous oxide to halothane MAC in infants and children. Anesth Analg 71:120–124, 1990PubMedCrossRefGoogle Scholar
  18. 18.
    Murray DJ, Mehta MP, Forbes RB: The additive contribution of nitrous oxide to isoflurane MAC in infants and children. Anesthesiology 75:186–190, 1991PubMedCrossRefGoogle Scholar
  19. 19.
    Zwass MS, Fisher DM, Welborn LG et al: Induction and maintenance characteristics of anesthesia with desflurane and nitrous oxide in infants and children. Anesthesiology 76:373–378, 1992PubMedCrossRefGoogle Scholar
  20. 20.
    Taylor R, Lerman J: Induction and recovery characteristics of desflurane in infants and children. Can J Anaesth 39:6–13, 1992PubMedCrossRefGoogle Scholar
  21. 21.
    Doi M, Ikeda K: Airway irritation produced by volatile anesthetics during brief inhalation: Comparison of halothane, enflurane, isoflurane and sevoflurane. Can J Anaesth 40:122–126, 1993PubMedCrossRefGoogle Scholar
  22. 22.
    Fisher DM, Robinson S, Brett CM et al: Comparison of enflurane, halothane, and isoflurane for diagnostic and therapeutic procedures in children with malignancies. Anesthesiology 63:647–650, 1981CrossRefGoogle Scholar
  23. 23.
    Davis PJ, Cohen IT, McGowan FX et al: Recovery characteristics of desflurane versus halothane for maintenance of anesthesia in pediatric ambulatory patients. Anesthesiology 80:298–302, 1994PubMedCrossRefGoogle Scholar
  24. 24.
    Piat V, Dubois MC, Murat I: Comparison of induction and recovery characteristics of sevoflurane and halothane in children (abstract). Br J Anaesth 72 (suppl 1) A178, 1994Google Scholar
  25. 25.
    Taivainen T, Meretoja OA, Tiainen P et al: Sevoflurane versus halothane in pediatric anesthesia (abstract). Br J Anaesth 72 (suppl 1) A177, 1994Google Scholar
  26. 26.
    Eger EI II, Johnson BH: Rates of awakening from anesthesia with I653, halothane, isoflurane, and sevoflurane: A test of the effect of anesthetic concentration and duration in rats. Anesth Analg 66:977–982, 1987PubMedGoogle Scholar
  27. 27.
    Levine M, Sarner J, Lerman J et al: Emergence characteristics after sevoflurane anesthesia in children: A comparison with halothane. Anesth Analg 76:S221, 1993Google Scholar
  28. 28.
    Koblin DD: Characteristics and implications of desflurane metabolism and toxicity. Anesth Analg 75:S10–16, 1992PubMedGoogle Scholar
  29. 29.
    Kharasch ED, Thummel KE: Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Anesthesiology 79:795–807, 1993PubMedCrossRefGoogle Scholar
  30. 30.
    Levine M, Sarner J, Lerman J et al: Plasma inorganic fluoride ion concentration in children after prolonged sevoflurane anesthesia. Can J Anaesth 40:A66, 1993Google Scholar
  31. 31.
    Frink EJ, Malan TP, Isner RJ et al: Renal concentrating function with prolonged sevoflurane or enflurane anesthesia in volunteers. Anesthesiology 80:1019–1025, 1994PubMedCrossRefGoogle Scholar
  32. 32.
    Stoelting RK, Peterson C: Methoxyflurane anesthesia in pediatric patients: Evaluation of anesthetic metabolism and renal function. Anesthesiology 42:26–29, 1975PubMedCrossRefGoogle Scholar
  33. 33.
    Wong DT, Lerman J, Volgyesi GA: Factors affecting the disappearance of sevoflurane in baralyme. Can J Anaesth 39:366–369, 1992PubMedCrossRefGoogle Scholar
  34. 34.
    Frink EJ, Malan TP, Morgan SE et al: Quantification of the degradation products of sevoflurane in two CO2 absorbants during low-flow anesthesia in surgical patients. Anesthesiology 77:1064–1069, 1992PubMedCrossRefGoogle Scholar
  35. 35.
    Bito H, Ikeda K: Closed circuit anesthesia with sevoflurane in humans: Effects on renal and hepatic function and concentrations of breakdown products with soda lime in the circuit. Anesthesiology 80:71–76, 1994PubMedCrossRefGoogle Scholar
  36. 36.
    Mazze RI. The safety of sevoflurane in humans (editorial). Anesthesiology 77:1062–1063, 1992PubMedCrossRefGoogle Scholar
  37. 37.
    Gonsowski CT, Laster MJ, Eger EI II et al: Toxicity of compound A in rats: Effect of a 3-hour administration. Anesethesiology 80:556–565, 1994CrossRefGoogle Scholar
  38. 38.
    Gonsowski CT, Laster MJ, Eger II EI et al: Toxicity of compound A in rats: Effect of increasing duration of administration. Anesthesiology 80:566–575, 1994PubMedCrossRefGoogle Scholar
  39. 39.
    Weiskopf RB, Sampson D, Moore MA: The desflurane (TEC 6) vaporizer: Design, design considerations, and performance evaluation. Br J Anaesth 72:474–479, 1994PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • J. Lerman

There are no affiliations available

Personalised recommendations