Skip to main content

Magnetic Field Experiment on the Freja Satellite

  • Chapter
The Freja Mission

Abstract

Freja is a Swedish scientific satellite mission to study fine scale auroral processes. Launch was October 6, 1992, piggyback on a Chinese Long March 2C, to the present 600 × 1750 km, 63° inclination orbit. The JHU/APL provided the Magnetic Field Experiment (MFE), which includes a custom APL-designed Forth language microprocessor. This approach has led to a truly generic and flexible design with adaptability to differing mission requirements and has resulted in the transfer of significant ground analysis to on-board processing. Special attention has been paid to the analog electronic and digital processing design in an effort to lower system noise levels, verified by inflight data showing unprecedented system noise levels for near-Earth magnetic field measurements, approaching the fluxgate sensor levels. The full dynamic range measurements are of the 3-axis Earth’s magnetic field taken at 128 vector samples s-1 and digitized to 16 bit resolution, primarily used to evaluate currents and the main magnetic field of the Earth. Additional 3-axis ‘AC channels are bandpass filtered from 1.5 to 128 Hz to remove the main field spin signal, the range is ±650 nT. These vector measurements cover Pc waves to ion gyrofrequency magnetic wave signals up to the oxygen gyrofrequency (~40 Hz). A separate, seventh channel samples the spin axis sensor with a bandpass filter of 1.5 to 256 Hz, the signal of which is fed to a software FFT. This on-board FFT processing covers the local helium gyrofrequencies (~160 Hz) and is plotted in the Freja Summary Plots (FSPs) along with disturbance fields. First data were received in the U.S. October 16 from Kiruna, Sweden via the Internet and SPAN e-mail networks, and were from an orbit a few hours earlier over Greenland and Sweden. Data files and data products, e.g., FSPs generated at the Kiruna ground station, are communicated in a similar manner through an automatic mail distribution system in Stockholm to PIs and various users. Distributed management of spacecraft operations by the science team is also achieved by this advanced communications system.

An exciting new discovery of the field-aligned current systems is the high frequency wave power or structure associated with the various large-scale currents. The spin axis ‘AC’ data and its standard deviation is a measure of this high-frequency component of the Birkeland current regions. The exact response of these channels and filters as well as the physics behind these wave and/or fine-scale current structures accompanying the large-scale currents is being pursued; nevertheless, the association is clear and the results are used for the MFE Birkeland current monitor calculated in the MFE microprocessor. This monitor then sets a trigger when it is greater than a commandable, preset threshold. This ‘event’ flag can be read by the system unit and used to remotely command all instruments into burst mode data taking and local memory storage. In addition, Freja is equipped with a 400 MHz ‘Low Speed Link’ transmitter which transmits spacecraft housekeeping that can be received with a low cost, portable receiver. These housekeeping data include the MFE auroral zone current detector; this space weather information indicates the location and strength of ionospheric current systems that directly impact communications, power systems, long distance telephone lines and near-Earth satellite operations. The JHU/APL MFE is a joint effort with NASA/GSFC and was co-sponsored by the Office of Naval Research and NASA/Headquarters in cooperation with the Swedish National Space Board and the Swedish Space Corporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acuña, M. H.: 1974, ‘Fluxgate Magnetometers for Outer Planets Exploration’, IEEE Trans. Magnetics Mag-10, 519.

    Article  ADS  Google Scholar 

  • Acuña, M. H., Scearce, S. C., Seek, J. B., and Scheifele, J.: 1978, The Magsat Vector Magnetometer — A Precision Fluxgate Magnetometer for the Measurement of the Geomagnetic Field, NASA TM-79656.

    Google Scholar 

  • Anderson, B. J., Takahashi, K., Erlandson, R. E., and Zanetti, L. J.: 1990, ‘Pc1 Pulsations Observed by AMPTE/CCE in the Earth’s Outer Magnetosphere’, Geophys. Res. Letters 17, 1853.

    Article  ADS  Google Scholar 

  • Anderson, B. J., Potemra, T. A., Bythrow, P. F., Zanetti, L. J., Holland, D. B., and Winningham, J. D.: 1993, ‘Auroral Currents During the Magnetic Storm of November 8 and 9, 1991: Observations from the Upper Atmosphere Research Satellite Particle Environment Monitor’, Geophys. Res. Letters 20, 1327.

    Article  ADS  Google Scholar 

  • Ballard, B., Henshaw, R., and Zaremba, T.: 1984, ‘Forth Direct Execution Processors in the Hopkins Ultraviolet Telescope’, The Journal of Forth Application and Research 2, 33–47.

    Google Scholar 

  • Burke, W. J., Hardy, D. A., Rich, F. J., Kelly, M. C., Smiddy, M., Shuman, B., Sagalyn, R. C., Vancour, R. P., Wipman, P. J. L., and Lai, S. T.: 1980, ‘Electrodynamic Structure of the Late Evening Sector of the Auroral Zone’, J. Geophys. Res. 85, 1179.

    Article  ADS  Google Scholar 

  • Bythrow, P. F., Doyle, M. A., Potemra, T. A., Zanetti, L. J., Huffman, R. E., Meng, C.-I., Hardy, D. A., Rich, F. J., and Heelis, R. A.: 1986, ‘Multiple Auroral Arcs and Birkeland Currents: Evidence for Plasma Sheet Boundary Waves’, Geophys. Res. Letters 13, 805.

    Article  ADS  Google Scholar 

  • Eliasson, L. et al.: 1994, The Freja Particle Instrument’, Space Sci. Rev. 70, 000 (this issue).

    Google Scholar 

  • Engebretson, M. J., Zanetti, L. J., Potemra, T. A., and Acuña, M. H.: 1986, ‘Harmonically Structured ULF Pulsations Observed by the AMPTE/CCE Magnetic Field Experiment’, Geophys. Res. Letters 13, 905.

    Article  ADS  Google Scholar 

  • Erlandson, R. E., Zanetti, L. J., and Potemra, T. A.: 1989, ‘Magnetic Fluctuations from 0 to 26 Hz Observed from a Polar Orbiting Satellite’, IEEE Trans. on Plasma Sci. 17, 196.

    Article  ADS  Google Scholar 

  • Erlandson, R. E., Zanetti, L. J., Potemra, T. A., Block, L. P., and Holmgren, G.: 1990, ‘Viking Magnetic and Electric Field Observations of PC1 Waves at High Latitudes’, J. Geophys. Res. 95, 5941.

    Article  ADS  Google Scholar 

  • Gordon, D. I. and Brown, R. E.: 1972, ‘Recent Advances in Fluxgate Magnetometry’, IEEE Trans. Magnetics Mag-8, 76.

    Google Scholar 

  • Grahn, S. et al.: 1994, ‘The Freja Spacecraft’, Space Sci. Rev. 70, 000 (this issue).

    Google Scholar 

  • Hayes, J. R., Fraeman, M. E., Williams, R. L., and Zaremba, T.: 1987, ‘An Architecture for the Direct Execution of the Forth Programming Language, Proceedings of the Second International Conference on Architectural Support for Programming Languages and Operating System’, The Compute Society of the IEEE, pp. 42–49.

    Google Scholar 

  • Iijima, T., Potemra, T. A., and Zanetti, L. J.: 1990, ‘Large-Scale Characteristics of Magnetospheric Equatorial Currents’, J. Geophys. Res. 95, 991.

    Article  ADS  Google Scholar 

  • Marklund, G. et al.: 1994, ‘The Freja Electric Field Instrument’, Space Sci. Rev. 70, 000 (this issue).

    Google Scholar 

  • Mauk, B. H. and Zanetti, L. J.: 1987, ‘Magnetospheric Electric Fields and Currents’, Rev. Geophys. Space Phys. 25, 541.

    Article  Google Scholar 

  • Potemra, T. A., Zanetti, L. J., Bythrow, P. F., Erlandson, R. E., Lundin, R., Marklund, G. T., Block, L. P., and Lindqvist, P.-A.: 1988, ‘Resonant Geomagnetic Field Oscillations and Birkeland Currents in the Morning Sector’, J. Geophys. Res. 93, 2661.

    Article  ADS  Google Scholar 

  • Potemra, T. A., Zanetti, L. J., Erlandson, R. E., Bythrow, P. F., Gustafsson, G., Acuña, M. H., and Lundin, R.: 1987, ‘Observations of Large-Scale Birkeland Currents with Viking’, Geophys. Res. Letters 14, 419.

    Article  ADS  Google Scholar 

  • Zanetti, L. J., Potemra, T. A., Anderson, B., Erlandson, R. E., Holland, D. B., Acuna, M. H., Kappenman, J., Lesher, R., and Feero, W.: 1994, ‘Freja Magnetic Field Measurements and the Sunburst Monitor System’, Geophys. Res. Letters (in press).

    Google Scholar 

  • Zanetti, L. J., Baumjohann, W., Potemra, T. A., and Bythrow, P. F.: 1984, IN T. A. Potemra (ed.), ‘Three-Dimensional Birkeland-Ionospheric Current Systems Determined from MAGSAT’, Magnetospheric Currents, Geophysical Monograph 28, 131–136.

    Google Scholar 

  • Zanetti, L. J., Potemra, T. A., Iijima, T, and Baumjohann, W.: 1991, ‘Equatorial, Birkeland, and Ionospheric Currents of the Magnetospheric Storm Circuit’, Magnetospheric Substorms, AGU Monograph 64, 111–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zanetti, L. et al. (1994). Magnetic Field Experiment on the Freja Satellite. In: Lundin, R., Haerendel, G., Grahn, S. (eds) The Freja Mission. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0299-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0299-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4132-4

  • Online ISBN: 978-94-011-0299-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics