Skip to main content

Diffusion of Hydrogen in Amorphous and Nanocrystalline Alloys

  • Chapter
Interstitial Intermetallic Alloys

Part of the book series: NATO ASI Series ((NSSE,volume 281))

  • 373 Accesses

Abstract

Experimental results on short-range and long-range hydrogen diffusion are presented for nanocrystalline Fe90Zr10, produced by crystallization of melt-spun amorphous ribbons, and compared with those for amorphous alloys. Both the amorphous and nanocrystalline alloys show a strong concentration dependence on the hydrogen diffusion kinetics, which can be explained by a potential with a distribution of site, as well as saddlepoint enthalpies, according to the Kirchheim model. In the nanocrystalline alloys these topologically disordered regions are assigned to the interfaces. The average activation enthalpy of hydrogen diffusion in the interfaces is about 0.1eV lower than in amorphous Fe91Zr9, indicating lower potential barriers in the interfaces of the nanocrystalline material than in the amorphous state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Adler, Z. Metallic. 56 (1965) 294.

    Google Scholar 

  2. C.U. Maier, M. Hirscher, and H. Kronmüller, Phil. Mag. B 60 (1989) 627.

    Article  Google Scholar 

  3. M. Hirscher and H. Kronmüller, J. of Less-Common Met. 172–174 (1991) 658.

    Article  Google Scholar 

  4. H. Kronmüller, in: Hydrogen in Metals I, Eds. G. Alefeld and J. Völkl, Springer, Berlin-Heidelberg-New York, 1978, p.289.

    Chapter  Google Scholar 

  5. B. Hohler and H. Kronmüller, Phil. Mag. A 43 (1981) 1189 and 45 (1982) 607.

    Article  ADS  Google Scholar 

  6. M. Hirscher and H. Kronmüller, Rad. Effects and Defects in Solids 108 (1989) 359.

    Article  Google Scholar 

  7. A. Hofmann and H. Kronmüller, phys. stat. sol. (a) 104 (1987) 381 and 619.

    Article  ADS  Google Scholar 

  8. C.U. Maier and H. Kronmüller, J. of Less-Common Met. 172–174 (1991) 671.

    Article  Google Scholar 

  9. J. Mössinger and M. Hirscher, Z. phys. Chem. 183 (1994) 13.

    Article  Google Scholar 

  10. M. Vergnat, H. Chatbi, and G. Marchal, Appl. Phys. Lett. 64 (1994) 2084.

    Article  ADS  Google Scholar 

  11. E.H. Büchler, diploma thesis, Universität Stuttgart 1991.

    Google Scholar 

  12. S. Zimmer, diploma thesis, Universität Stuttgart 1992.

    Google Scholar 

  13. H. Kronmüller, Nachwirkung in Ferromagnetika ,Springer, Berlin 1968.

    Book  Google Scholar 

  14. H. Kronmüller, in: Vacancies and Interstitials in Metals ,Eds. A. Seeger, D.Schumacher, W. Schilling, and J. Diehl, North-Holland, Amsterdam, 1969,p.667.

    Google Scholar 

  15. F. Walz, Appl. Phys. 3 (1974) 313 and phys. stat. sol. (a) 82 (1984) 179.

    Article  ADS  Google Scholar 

  16. G. Richter, Ann. Phys. 29 (1937) 605.

    Article  Google Scholar 

  17. J.R. Cost, J. Appl. Phys. 54 (1983) 2137.

    Article  ADS  Google Scholar 

  18. M. Abramowitz, and I. Stegun, Handbook of Mathematical Functions. National Bureau of Standards 1972.

    Google Scholar 

  19. R. Kirchheim, Acta metall. 30 (1982) 1069 and Prog. Mat. Sci. 32 (1988) 262.

    Article  Google Scholar 

  20. L.A. Jacobson and J. McKittrick, Mat. Sci. Eng. R11 (1994) 355.

    Google Scholar 

  21. R. Kirchheim, F. Sommer, and G. Schluckebier, Acta metall. 30 (1982) 1059.

    Article  Google Scholar 

  22. B.S. Berry and W.C. Pritchet, Scripta metall. 15 (1981) 637 and Z. phys. Chem. NF, 163 (1989) 381.

    Article  Google Scholar 

  23. H. Mizubayashi, H. Agari, and S. Okuda, Z. phys. Chem. NF, 163 (1989) 391.

    Article  Google Scholar 

  24. W. Ulfert and H. Kronmüller, Z. phys. Chem. NF, 163 (1989) 397.

    Article  Google Scholar 

  25. H. Gleiter and P. Marquardt, Z. Metallkund. 75 (1984) 263.

    Google Scholar 

  26. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64 (1988) 6044.

    Article  ADS  Google Scholar 

  27. G. Herzer, IEEE Trans. Magn. 25 (1989) 3327, 26 (1990) 1397, and Mat. Sci. Eng. A133 (1991) 1.

    Article  ADS  Google Scholar 

  28. R. Kirchheim, T. Mütschele, W. Kieninger, H. Gleiter, R. Birringer, and T.D. Koble, Mat. Sci. Eng. 99 (1989) 457.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hirscher, M. (1995). Diffusion of Hydrogen in Amorphous and Nanocrystalline Alloys. In: Grandjean, F., Long, G.J., Buschow, K.H.J. (eds) Interstitial Intermetallic Alloys. NATO ASI Series, vol 281. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0295-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0295-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4130-0

  • Online ISBN: 978-94-011-0295-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics