Skip to main content

Diel patterns of feeding and vertical migration in daphnids and diaptomids during the clear water phase in Lake Geneva (France)

  • Conference paper
Space Partition within Aquatic Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 104))

  • 94 Accesses

Abstract

In lacustrine environments, little attention has been paid to small-scale interactions between zooplankton diel vertical migration (DVM) and feeding rhythms. Moreover, most of the information on in situ diel feeding and migratory rhythms is based on low sampling frequencies. The kinetics and the degree of coupling of these processes are thus only roughly known. Here, we present a study conducted on a diel cycle in Lake Geneva to establish the temporal and spatial relationships between DVM and grazing activity of the dominant planktonic crustaceans. Our methodological approach is based on reliable and frequent (every 30 minutes) sampling, and on gut fullness analysis. We test the hypothesis of temporal and spatial segregation in DVM and feeding activity of sympatric taxa to counteract resource competition. We also evaluate the variation in DVM and feeding activity between taxa, size and sexes. In Lake Geneva, the Daphnia complex of different species and size (D. hyalina x galeata) and the diaptomid (Eudiaptomus gracilis) have distinct DVM and diel feeding patterns which lead to temporal and spatial segregation. Differences arise from the amplitude and kinetics of DVM and diel feeding rhythms. A strong day/night contrast in depth distribution and feeding activity was observed for the large daphnids while the small daphnids and the diaptomids had lower amplitudes of DVM and weaker diel changes in feeding activity. Large Daphnia exhibited a bimodal feeding pattern coupled with dynamic interchange of individuals between the epi- and hypolimnetic layers at dusk and dawn. In contrast, little coupling between DVM and feeding patterns was found for the diaptomid. These distinct behaviours can be viewed as specific adaptative strategies developed by calanids and daphnids to limit interspecific competition and to compromise between avoidance of starvation in deep waters and avoidance of visual predators in surface layers. Our study supports the hypothesis of exogenous control of Daphnia DVM by the relative change in light intensity at dusk and dawn, but also suggests that small Daphnia (not large ones), are controlled by absolute light variations when this major stimulus is lacking. Our results also support the hypothesis that selective predation by fish is responsible for the observed differences in DVM and diel feeding patterns of sized-daphnids and diaptomids. Other factors explaining the coupling of DVM and feeding patterns are hunger, vertical temperature gradient and for daphnids, size. Thus, ecological plasticity in crustacean DVM and feeding patterns results from the interactive effect of multiple abiotic and biotic driving forces. Finally, our study also shows that large Daphnia have a marked contribution to the acceleration of downward nutrient fluxes in Lake Geneva, via their diurnal rhythm in feeding and vertical migration. Ecological implications of the study for lake management and sampling design of zooplankton grazing studies are also presented.

Résumé

Dans les écosystèmes lacustres, les interactions à fine échelle temporelle entre les patrons diurnes de migration verticale et de broutage du zooplancton sont peu étudiées. En outre, jusqu’à présent, les études ont généralement été réalisées selon des chroniques temporelles assez lâches. La cinétique et le degré d’interaction entre les patrons journaliers de migration verticale et de broutage sont donc encore mal connus. La présente étude, conduite au LacLéman (Lac de Genève) au cours d’un cycle nycthéméral. lenie de préciser les liaisons spatiales et temporelles existant entre les migrations journalières et la consommation de phytoplancton chez les taxons de Crustacés les mieux représentés. Notre approche méthodologique repose sur une maille temporelle d’échantillonnage fine et sur l’analyse de la fluorescence du contenu stomacal. Nous testons l’hypothèse d’une ségrégation spatio-temporelle visant à réduire la compétition entre les taxons sympatriques et reposant sur des différences entre les patrons journaliers respectifs de migration et d’alimentation. Nous évaluons pour ces rythmes d’activité les différences entre les espèces, les classes de tailles et les sexes. Au lac Léman, le complexe de différentes espèces et tailles de daphnies (Daphnia hyalina x galeala) et le diaptomide (Eudiaptomus gracilis) présentent des patrons journaliers de migration et d’alimentation distincts, assurant une ségrégation spatio-temporelle. Les différences proviennent de variations dans la cinétique et l’amplitude des migrations et dans les niveaux d’alimentation. Les grandes daphnies affichent un fort contraste jour/nuit dans leur répartition verticale et leur état de réplétion, tandis que les petites daphnies et les diaptomides présentent une faible amplitude de migration et de variations circadtennes de réplétion. Les grandes daphnies ont un rythme alimentaire bimodal couplé avec un relais dynamique des organismes entre l’épilimnion et l’hypolimnion au crépuscule et à l’aube. Chez le diaptomide, les interactions sont au contraire faibles entre les patrons de migration verticale et de réplétion. Ces différents comportements peuvent être perçus comme des stratégies adaptatives spécifiques développées par les daphnies et les diaptomides pour limiter la compétition interspécifique et aboutir à un compromis satisfaisant entre l’évitement de la famine en eaux profondes et de la prédation par les poissons dans les eaux superficielles. Notre étude conforte l’hypothèse d’un contrôle exogène de la migration verticale de Daphnia par les changements relatifs de la lumière au crépuscule et à l’aube. En l’absence de ce stimulus, la répartition verticale des petites daphnies semble par contre contrôlée par les variations absolues de lumière. Nos observations confortent également l’hypothèse que la prédation sélective par les poissons est responsable des différences observées dans les patrons de migration des grandes daphnies et ceux des petites daphnies et des diaptomides. Les autres facteurs pouvant influencer les patrons de migration et d’alimentation des crustacés du Lac Léman sont la famine, le gradient thermique vertical et, chez les daphnies, la taille. En définitive, la plasticité écologique des patrons journaliers de migration et d’alimentation résulte des effets interactifs de plusieurs processus générateurs de nature abiotique et biotique. Enfin, noire étude démontre aussi que les grandes daphnies ont un rôle très important dans le transfert des nutriments dans les couches profondes durant l’été, via leurs migrations verticales et les variations circadiennes d’activité alimentaire. Les implications écologiques pour l’aménagement lacustre et la planification des études portant sur le broutage du ooplancton sont aussi présentées.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, V. & P. Nival, 1991. A model of the diel vertical migration of zooplankton based on euphausiids. J. mar. Res. 49: 153–175.

    Article  Google Scholar 

  • Angel, M. V., 1989. Does mesopelagic biology affect the vertical flux? In Productivity of the Ocean: Present and Past. W. H. Berger, V. S. Stemacek & G. Wefer (eds). John Wiley & Sons Limited, 155–173.

    Google Scholar 

  • Balvay, G., M. Gawler & J. P. Pelletier, 1990. Lake trophic status and the development of the clear water phase in Lake Geneva. In Large lakes: Ecological structure and function. Tilzer, M. & C. Serruya: 580–592.

    Google Scholar 

  • Becker, M. & R. Eckmann, 1992. Plankton selection by pelagic european whiterfish in Lake Constance: dependency on season and time of the day. Polsk. Arch. Hydrobiol. 39: 393–402.

    Google Scholar 

  • Bogdan, K. G. & J. J. Gilbert, 1982. Seasonal patterns of feeding by natural populations of Keratella, Polyarthra ,and Bosmina: Clearance rates, selectivities, and contributions to community grazing. Limnol. Oceanogr. 27: 918–934.

    Article  Google Scholar 

  • Bohrer, R. N., 1980. Experimental studies on diel vertical migration. In W. C. Kerfoot (ed.). Evolution and Ecology of zooplankton communities. The University Press of New England, Hanover (N.H.),Lond.: 111–121.

    Google Scholar 

  • Bollens, S. M. & B. W. Frost, 1989a. Zooplanktivorous fish and variable diel vertical migration in the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 34: 1072–1083.

    Article  Google Scholar 

  • Bollens, S. M. & B. W. Frost, 1989b. A predator-induced diel vertical migration in a planktonic copepod. J. Plankton Res. 11: 1047– 1065.

    Article  Google Scholar 

  • Bollens, S. M. & B. W. Frost, 1991. Diel vertical migration in zooplankton: rapid individual response to predators. J. Plankton Res. 13: 1359–1365.

    Article  Google Scholar 

  • Buchanan, C. & J. F. Haney, 1980. Vertical migrations of zoo-plankton in the Arctic: A test of the environmental controls. In W. C. Kerfoot (ed.). Evolution and Ecology of zooplankton com-munities. The University Press of New England, Hanover (N.H.); Lond.: 69–79.

    Google Scholar 

  • Cervetto, G., M. Pagano & R. Gaudy, 1995. Feeding behaviour and migrations in a natural population of the copepod Acartia tonsa. Hydrobiologia 300/301 (Dev. Hydrobiol. 104): 239–250.

    Article  Google Scholar 

  • Chisholm, S. W., R. G. Stross & P. A. Nobbs, 1975. Environmen-tal and intrinsic control of filtering and feeding rates in arctic Daphnia. J. Fish. Res. Bd Can. 32: 219–226.

    Article  Google Scholar 

  • Chow-Fraser, P. & R. Knoeckel, 1985. Factors regulating in situ filtering rates of Cladocera. Can. J. Fish. aquat. Sci. 42: 567–576.

    Article  Google Scholar 

  • Conover, R. J., 1968. Zooplankton-life in a nutritionally dilute envi-ronment. Am. Zool. 8: 107–118.

    Google Scholar 

  • Conover, W. J., 1980. Practical non-parametric statistics. W. J. Conover (ed.) 2nd edn, 493 pp.

    Google Scholar 

  • Daro, M. H., 1985. Feeding rhythms and vertical distribution of marine copepods. Bull. mar. Sci. 37: 487–497.

    Google Scholar 

  • Dawidowicz, P. & C. J. Loose, 1992. Metabolic cost during predator-induced diel vertical migration of Daphnia. Limnol. Oceanogr. 37: 1589–1595.

    Article  Google Scholar 

  • De Meester, L., 1993. Genotype, fish-mediated chemicals, and pho-totactic behavior in Daphnia magna. Ecology 74: 1467–1474.

    Article  Google Scholar 

  • De Stasio, B. T. Jr., 1993. Diel vertical and horizontal migration by zooplankton: Population budgets and the diurnal deficit. Bull. mar. Sci. 53: in press.

    Google Scholar 

  • De Stasio, B. T. Jr., N. Nibbelink & P. Olsen, 1993. Diel verti-cal migration and global climate change: A dynamic modeling approach to zooplankton behavior. Verh. int. Ver. Limnol. 25: 401–405.

    Google Scholar 

  • Dini, M. L. & S. R. Carpenter, 1992. Fish predators, food availability and diel vertical migration in Daphnia. J. Plankton Res. 14: 359– 377.

    Article  Google Scholar 

  • Dini, M. L., J. O’Donnell, S. R. Carpenter, M. M. Elser, J. J. Elser & M. A. Bergquist, 1987. Daphnia size structure, vertical migration, and phosphorus redistribution. Hydrobiologia 150: 185–191.

    Article  Google Scholar 

  • Dodson, S., 1990. Predicting diel vertical migration of zooplankton. Limnol. Oceanogr. 35: 1195–1200.

    Article  Google Scholar 

  • Downing, J. A. & R. H. Peters, 1980. The effect of body size and food concentration on the in situ filtering rate of Sida crystallina. Limnol. Oceanogr. 25: 883–895.

    Article  Google Scholar 

  • Dottrens, E., 1950. Le Corégone actuel du Léman. Revue Suisse Zool. 57: 789–913.

    Google Scholar 

  • Duval, W. S. & G. H. Geen, 1976. Diel feeding and respiration rhythms in zooplankton. Limnol. Oceanogr. 21: 823–829.

    Article  Google Scholar 

  • Enright, J. T. & H. W. Honneger, 1977. Diurnal vertical migration: Adaptative significance and timing. 2. Test of the model: Details of timing. Limnol. Oceanogr. 22: 873–886.

    Article  Google Scholar 

  • Floessner, D. & K. Kraus, 1986. On the taxonomy of the Daphnia hyalina-galeata complex (Crustacea, Cladocera). Hydrobiologia 137:97–115.

    Article  Google Scholar 

  • Fortin, R & E. Magnin, 1972. Quelques aspects qualitatifs et quanti-tatifs de lanourriture des perchaudes, Perca flavescens (Mitchill), dans la Grande Anse de l’lle Perrot, au lac Saint-Louis. Arch.. Hydrobiol. 3:79–91.

    Google Scholar 

  • Frost, B. W. & S. M. Bollens, 1992. Variability of diel vertical migra-tion in the marine planktonic copepod Pseudocalanus newmani in relation to its predators. Can. J. Fish. aquat. Sci. 49: 1137–1141.

    Article  Google Scholar 

  • Gawler, M. & N. Angeli, 1987. Intensité du broutage dans le lac Léman en relation avec la structure en taille des particules: Varia-tions nycthémérales. Nat. can. (Revue Ecol. Syst.) 114: 405–412.

    Google Scholar 

  • Gawler, M., P. Blanc, J. C. Druart & J. P. Pelletier, 1987. Dynamique de quelques populations majeures du phytoplancton printanier du lac Léman en relation avec le broutage et les sels nutritifs. Actes du Coll. Nat. CNRS ‘Biologie des populations’. Lyon, 4-6 Septembre 1986:412–419.

    Google Scholar 

  • Gawler, M., G. Balvay, P. Blanc, J. C. Druart & J. P. Pelletier, 1988. Plankton ecology of Lake Geneva: A test of the PEG-model. Arch. Hydrobiol. 114: 161–174.

    Google Scholar 

  • Geller, W., 1986. Diurnal vertical migration of zooplankton in a tem-perate great lake (L. Constance): A starvation avoidance mecha-nism? Arch. Hydrobiol. Suppl.74. 1: 1–60.

    Google Scholar 

  • Geller, W., R. Pinto-Coelho & H. R. Pauli, 1992. The vertical dis-tribution of zooplankton (Crustacea, Rotatoria, Ciliata) and their grazing over the diurnal and seasonal cycles in Lake Constance. Arch. Hydrobiol. Beih. Ergebn. Limnol. 35: 79–85.

    Google Scholar 

  • Gerdeaux, D. & J. Guillard, 1987. Approche des structures spatio-temporelles des populations de poissons dans le Léman. Coll. Nat. CNRS Biologie des populations, Lyon 4-6 Sept. 1986. 420–426.

    Google Scholar 

  • Gerritsen, J., 1982. Behavioral response of Daphnia to rate of tem-perature change: possible enhancement of vertical migration. Limnol. Oceanogr. 27: 254–261.

    Article  Google Scholar 

  • Gliwicz, M. Z., 1986. Predation and the evolution of vertical migra-tion in zooplankton. Nature 320: 746–748.

    Article  Google Scholar 

  • Gliwicz, M. Z. & A. Jachner, 1992. Diel migrations of juvenile fish: A ghost of predation past or present? Arch. Hydrobiol. 124: 385–410.

    Google Scholar 

  • Gliwicz, M. Z. & J. Pijanowska, 1988. Effect of predation and resource depth distribution on vertical migration of zooplankton. Bull. mar. Sci. 43: 695–709.

    Google Scholar 

  • Guillard, J., 1991. Etude des stocks pisciaires lacustres par échointégration: problèmes méthodologiques. These Doctorat Sci., Université CI. Bernard, Lyon, 156 pp.

    Google Scholar 

  • Guisande, C, A. Duncan & W. Lampert, 1991. Trade-offs in Daph- nia vertical migration strategies. Oecologia 87: 357–359.

    Article  Google Scholar 

  • Haney, J. F., 1973. An in situ examination of the grazing activities of natural zooplankton communities. Arch. Hydrobiol. 72: 87–132.

    Google Scholar 

  • Haney, J. F., 1985. Regulation of cladoceran filtering rates in nature by body size, food concentration, and diel feeding patterns. Lim-nol. Oceanogr. 30:397–411.

    Article  Google Scholar 

  • Haney, J. F., 1988. Diel patterns of zooplankton behavior. Bull. mar. Sci. 43: 583–603.

    Google Scholar 

  • Haney, J. F. & D. J. Hall, 1975. Diel vertical migration and filter-feeding activities of Daphnia. Arch. Hydrobiol. 75: 413–441.

    Google Scholar 

  • Harris, J. E., 1963. The role of endogenous rhythms in vertical migration. J. mar. biol. Ass. U.K. 43: 153–166.

    Article  Google Scholar 

  • Head, E. J., R. Wang & R. J. Conover, 1984. Comparison of diurnal feeding rhythms in Temora longicornis and Centwpages hamatus with digestive enzyme activity. J. Plankton Res. 6: 534–551.

    Article  Google Scholar 

  • Huntley, M., 1986. Experimental approaches to the study of vertical migration of zooplankton. Contrib. mar. Sci. 27: 71–90.

    Google Scholar 

  • Hutchinson, G. E., 1967. A treatise on limnology. II. Introduction to lake biology and the limnoplankton. J. Wiley & Sons, New York, New York, USA. 1115 pp.

    Google Scholar 

  • Jamet, J. L & N. Lair, 1991. An example of diel feeding cycle of two percids, perch (Perca fluviatilis) and ruffe (Gymnocephalus cernuus) in eutrophic lake Aydat (France). Ann. Sci. Nat. Zool. Paris, 12: 99–105.

    Google Scholar 

  • Lampert, W., 1989. The adaptative significance of diel vertical migration by zooplankton. Functional Ecology 3: 21–27.

    Article  Google Scholar 

  • Lampert, W., 1992. Zooplankton vertical migrations: Implications for phytoplankton-zooplankton interactions. Arch. Hydrobiol. Beih. Ergebn. Limnol. 35: 69–78.

    Google Scholar 

  • Lampert, W. & B. A. Taylor, 1985. Zooplankton grazing in a eutroph-ic lake: Implications of diel vertical migration. Ecology, 66: 68– 82.

    Article  Google Scholar 

  • Laurent, P. J., 1972. Lac Léman: effects of exploitation, eutrophica-tion, and introductions on the salmonid community. J. Fish. Res. Bd. Canada 29: 867–875.

    Article  Google Scholar 

  • Leibold, M. A., 1990. Resources and predators can affect the vertical distribution of zooplankton. Limnol. Oceanogr. 35: 938–944.

    Article  Google Scholar 

  • Leibold, M. A. & C. T. West, 1993. Experimental methods for measuring the effect of light acclimatation on vertical migration by Daphnia in the field. Limnol. Oceanogr. 38: 638–643.

    Article  Google Scholar 

  • Löffler, H., 1988. Fisheries management of Lake Constance: an example of international cooperation. In W. L. T. Van Dersen, B. Steinmetz&R. H. Huges(eds), 1990. Management of freshwa-ter fisheries. Proceedings of a symposium organized by the Euro-pean Inland Fisheries Advisory Commission, Göteborg, Sweden, 31 May-3 June 1988:38–52.

    Google Scholar 

  • Longhurst, A. R. & W. G. Harrison, 1989. The biological pump: Profiles of plankton production and consumption in the upper ocean. Prog. Oceanogr. 22: 47–123.

    Article  Google Scholar 

  • Loose, C. J., 1993. Lack of endogenous rhythmicity in Daphnia diel vertical migration. Limnol. Oceanogr. 38: 1837–1841.

    Article  Google Scholar 

  • Mackas, D. & R. Bohrer, 1976. Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. J. exp. mar. Biol. Ecol. 25: 77–85.

    Article  Google Scholar 

  • McMahon, J. W. & F. H. Rigler, 1963. Mechanisms regulating the feeding rate of Daphnia magna Straus. Can. J. Zool. 41: 321–332.

    Article  Google Scholar 

  • Mourelatos, S., C. Rougier & R. Pourriot, 1989. Diel patterns of zooplankton grazing in a shallow lake. J. Plankton Res. 11: 1021– 1035.

    Article  Google Scholar 

  • Nemoto, T., 1968. Chlorophyll pigments in the stomach of euphausi-ids. J. Oceanogr. Soc. Japan, 24: 253–260.

    Google Scholar 

  • Nival, P. & S. Nival, 1976. Description d’un appareil à fractionner le plancton utilisable à la mer. J. Cons. perm. int. Explor. Mer 35: 98–99.

    Google Scholar 

  • Ntimann, W. 1978. Versucheiner Klassifizierung der Bodenseecore-gonen durch Vergleich kombinierter Merkmale und die Eingliederung des sogenannten Braunfelchen. Arch. Hydrobiol. 82:500–521.

    Google Scholar 

  • Pearre, S. Jr., 1973. Vertical migration and feeding in Sagitta elegans Verill. Ecology 54: 300–314.

    Article  Google Scholar 

  • Pearre, S. Jr., 1979a. On the adaptative significance of vertical migra-tion. Limnol. Oceanogr. 24: 781–782.

    Article  Google Scholar 

  • Pearre, S. Jr., 1979b. Problems of detection and interpretation of vertical migration. J. Plankton Res. 1: 29–44.

    Article  Google Scholar 

  • Pijanowska, J. & P. Dawidowicz, 1987. The lack of vertical migra-tion in Daphnia: The effect of homogeneously distributed food. Hydrobiologia 148: 175–181.

    Article  Google Scholar 

  • Ponton, D., 1986. Croissance et alimentation de deux poissons planctonophages du lac Léman: le corégone (Coregonus schinzi palea Jurine) et le gardon (Rutilus rutilus (L.)). These de 3 ° cycle, Université CI. Bernard, Lyon, 158 pp.

    Google Scholar 

  • Ponton, D. & D. Gerdeaux, 1988. Quelques aspects de 1’alimentation de deux poissons planctonophages du Lac Léman: le corégone (Coregonus schinzii palea) et le gardon (Rutilus rutilus L.). Bull Fr. Pise. 308: 11–23.

    Article  Google Scholar 

  • Ponton, D. & R. Müller, 1988. Distribution of food larval and juve-nile Coregonus sp. in Lake Sarnen, Swizerland. Finnish Fish. Res. 9: 117–125.

    Google Scholar 

  • Post, J. R. & D. J. McQueen, 1988. Ontogenetic changes in the dis-tribution of larval and juvenile yellow perch (Perca flavescens): A response to prey or predators? Can. J. Fish. aquat. Sci. 45: 1820–1826.

    Article  Google Scholar 

  • Ringelberg, J., 1980. Introductory remarks: Causal and teleological aspects of diurnal migration. In W. C. Kerfoot (ed.). Evolution and Ecology of zooplankton communities. The University Press of New England, Hanover (N.H.), Lond.: 65–68.

    Google Scholar 

  • Ringelberg, J., 1987. Light induced behavior in Daphnia. In ‘Daph- nia’ R. H. Peters & R. De Bernardi (eds), Mem. 1st. ital. Idrobiol. 45: 285–323.

    Google Scholar 

  • Ringelberg, J., 1991a. Enhancement of the phototactic reaction in Daphnia hyalina by a chemical mediated by juvenile perch (Perca fluviatilis). J. Plankton Res. 13: 17–25.

    Article  Google Scholar 

  • Ringelberg, J., 1991b. A mechanism of predator-mediated induction of diel vertical migration in Daphnia hyalina. J. Plankton Res. 13: 83–89.

    Article  Google Scholar 

  • Ringelberg, J., B. J. G. Flik, D. Lindenaar & K. Rotackers, 1991. Diel vertical migration of Daphnia hyalina (sensu latiori) in Lake Maarsseveen: Part 1. Aspects of seasonal and daily timing. Arch. Hydrobiol. 121: 129–145.

    Google Scholar 

  • Rosselet, C, B. Buttiker, Y. Cassayre, D. Gerdeaux, E. Matthey & D. Pattay, 1990. Commission internationale pour la pêche dans le lac Léman: Bilan 1982–1990, Perspectives 1991–1996. C.I.P.E.L., Lausanne, 18 pp.

    Google Scholar 

  • Rudjakov, J. A., 1970. The possible causes of diel vertical migrations of planktonic animals. Mar. Biol. 6: 98–105.

    Article  Google Scholar 

  • Simard, Y., G. Lacroix & L. Legendre, 1985. In situ twilight grazing rhythm during diel vertical migrations of a scattering layer of Calanus finmarchicus. Limnol. Oceanogr. 30: 598–606.

    Article  Google Scholar 

  • Starkweather, P. L., 1975. Diel patterns of grazing in Daphnia pulex. Verh. int. Ver. Limnol. 19: 2851–2857.

    Google Scholar 

  • Starkweather, P. L., 1983. Daily patterns of feeding behavior in Daphnia and related microcrustacea: implications for cladoceran autecology and the zooplankton community. Hydrobiologia 100: 203–221.

    Article  Google Scholar 

  • Stich, H. B., 1989. Seasonal changes of diel vertical migrations of crustacean plankton in Lake Constance. Arch. Hydrobiol. Supp. 3: 355–405.

    Google Scholar 

  • Stich, H. B. & W. Lampert, 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293: 396– 398.

    Article  Google Scholar 

  • Stirling, D. G., D. J. McQueen & M. R. S. Johannes, 1990. Vertical migration in Daphnia galeata mendotae (Brooks): Demographic responses to changes in planktivore abundance. Can. J. Fish. aquat. Sci. 47: 395–400.

    Article  Google Scholar 

  • Thorpe, J. E., 1977. Morphology, physiology and ecology of Perca fluviatilis L. and P. flavescens Mitchill. J. Fish Res. Bd Can. 34: 1504–1514.

    Article  Google Scholar 

  • Tranter, D. J., 1968. Reviews on zooplankton sampling methods. In Zooplankton sampling, monographs on oceanographic method-ology, Paris, UNESCO, 174 p.

    Google Scholar 

  • Treasurer, J. W., 1988. The distribution and growth of lacustrine 0 + perch, Perca fluviatilis. Envir. Biol. Fishes, 21: 37–44.

    Article  Google Scholar 

  • Weider, L. J., 1993. Niche breadth and life history variation in a hybrid Daphnia complex. Ecology 74: 935–943.

    Article  Google Scholar 

  • Weider, L. J. & H. B. Stich, 1992. Spatial and temporal hetero-geneity of Daphnia in Lake Constance; intra-and interspecific comparisons. Limnol. Oceanogr. 37: 1327–1334.

    Article  Google Scholar 

  • Wolf, H. G. & M. A. Mort, 1986. Intra-specific hybridization under-lies phenotypic variability in Daphnia populations. Ecologia (Berlin) 68: 507–511.

    Article  Google Scholar 

  • Wright, D., W. J. O’Brien & G. L. Vinyard, 1980. Adaptative val-ue of vertical migration: A simulation model argument for the predation hypothesis. In W. C. Kerfoot (ed.). Evolution and Ecol-ogy of zooplankton communities. The University Press of New England, Hanover (N.H.), Lond.: 138–147.

    Google Scholar 

  • Yentsch, C. & D. Menzel, 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10:221–231.

    CAS  Google Scholar 

  • Zaret, T. M. & J. S. Suffern, 1976. Vertical migrations in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 21: 804– 813.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gérard Balvay

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Angeli, N., Pinel-Alloul, B., Balvay, G., Ménard, I. (1995). Diel patterns of feeding and vertical migration in daphnids and diaptomids during the clear water phase in Lake Geneva (France). In: Balvay, G. (eds) Space Partition within Aquatic Ecosystems. Developments in Hydrobiology, vol 104. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0293-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0293-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4129-4

  • Online ISBN: 978-94-011-0293-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics