Skip to main content

Cardiac electrophysiology of propionyl-L-carnitine

  • Chapter
The Carnitine System

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 162))

  • 69 Accesses

Abstract

Propionyl-L-carnitine (PLC) is a carnitine derivative which has been reported to exert relevant cardiovascular effects. Results from several animal studies seem to indicate that PLC may directly influence the myocardium, thus improving its performance [1, 2]. The aim of this article is to review the cellular electrophysiological effects provoked by PLC.

“It could be hypothesized that action potential duration prolongation, which we have demonstrated to occur in papillary muscles isolated from the heart of rabbits treated for ten days with propionyl-L-carnitine (and which might be due to a reduction in transient outward potassium current), is somehow related to the observed improvement in the contractile properties of the intact myocardium.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferrari R, Ceconi C, Curello S, Pasini E, Visioli O. Protective effect of propionyl-L-carnitine against ischaemia and reperfusion-damage. Mol Cell Biochem 1989; 88: 161–168.

    Article  PubMed  CAS  Google Scholar 

  2. Ferrari R, Di Lisa F, De Jong JW et al. Prolonged propionyl-L-carnitine pre-treatment of rabbit: biochemical, hemodynamic and electrophysiological effects on myocardium. J Mol Cell Cardiol 1992; 24: 219–232.

    Article  PubMed  CAS  Google Scholar 

  3. Aomine M, Arita M. Differential effects of L-propionylcarnitine on the electrical and mechanical properties of guinea pig ventricular muscle in normal and acidic conditions. J Electrocardiol 1987; 20: 287–296.

    Article  PubMed  CAS  Google Scholar 

  4. Aomine M, Arita M, Shimada T. Effects of L-propionylcarnitine on electrical and mechanical alterations induced by amphiphilic lipids in isolated guinea pig ventricular muscle. Heart Vessels 1988; 4: 197–206.

    Article  PubMed  CAS  Google Scholar 

  5. Carbonin PU, Ramacci MT, Pahor M et al. Antiarrhythmic effect of L-propionylcarnitine in isolated cardiac preparations. Cardioscience 1991; 2: 109–114.

    PubMed  CAS  Google Scholar 

  6. Aomine M, Nobe S, Arita M. Electrophysiologic effects of a short-chain acyl carnitine, L-propionylcarnitine, on isolated canine Purkinje fibers. J Cardiovasc Pharmacol 1989; 13: 494–501.

    Article  PubMed  CAS  Google Scholar 

  7. Barbieri M, Carbonin PU, Cerbai E et al. Lack of correlation between the antiarrhythmic effect of L-propionylcarnitine on reoxygenation-induced arrhythmias and its electrophysiological properties. Br J Pharmacol 1991; 102: 73–78.

    Article  PubMed  CAS  Google Scholar 

  8. Paulson DJ, Traxler J, Schmidt M, Noonan J, Shug AL. Protection of the ischaemic myocardium by L-propionylcarnitine: effects on the recovery of cardiac output after ischaemia and reperfusion, carnitine transport, and fatty acid oxidation. Cardiovasc Res 1986; 20: 536–541.

    Article  PubMed  CAS  Google Scholar 

  9. Carbonin PU, Ramacci MT, Pahor M et al. Antiarrhythmic profile of propionyl-L-carnitine in isolated cardiac preparations. Abstr Symp Focus on Propionyl-L-Carnitine, Rome, Italy, 1988.

    Google Scholar 

  10. Kléber AG. Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts. Circ Res 1983; 52: 442–450.

    Article  PubMed  Google Scholar 

  11. Amerini S, Carbonin P, Cerbai E, Giotti A, Mugelli A, Pahor M. Electrophysiological mechanisms for the antiarrhythmic action of mexiletine on digitalis-, reperfusion-and reoxygenation-induced arrhythmias. Br J Pharmacol 1985; 86: 805–815.

    Article  PubMed  CAS  Google Scholar 

  12. Ferrier GR, Moffat MP, Lukas A. Possible mechanisms of ventricular arrhythmias elicited by ischemia followed by reperfusion. Studies on isolated canine ventricular tissues. Circ Res 1985; 56: 184–194.

    CAS  Google Scholar 

  13. Mugelli A, Amerini S, Piazzesi G, Giotti A. Barium-induced spontaneous activity in sheep cardiac Purkinje fibers. J Mol Cell Cardiol 1983; 13: 697–711.

    Article  Google Scholar 

  14. Amerini S, Bernabei R, Carbonin P, Cerbai E, Mugelli A, Pahor M. Electrophysiological mechanism for the antiarrhythmic action of propafenone: a comparison with mexiletine. Br J Pharmacol 1988; 95: 1039–1046.

    Article  PubMed  CAS  Google Scholar 

  15. Ferrier GR. Digitalis arrhythmias: role of oscillatory afterpotentials. Progr Cardiovasc Dis 1977; 19: 459–474.

    Article  CAS  Google Scholar 

  16. Kukushkin NI, Gainullin RZ, Sosunov EA. Transient outward current and rate dependence of action potential duration in rabbit cardiac ventricular muscle. Pflügers Arch 1983; 399: 87–92.

    Article  PubMed  CAS  Google Scholar 

  17. Giles WR, Imaizumi Y. Comparison of potassium currents in rabbit atrial and ventricular cells. J Physiol (Lond) 1988; 405: 123–145.

    PubMed  CAS  Google Scholar 

  18. Boyett MR. Effect of rate-dependent changes in the transient outward current on the action potential in sheep Purkinje fibers. J Physiol (Lond) 1981; 319: 23–41.

    PubMed  CAS  Google Scholar 

  19. Hiraoka M, Kawano S. Mechanism of increased amplitude and duration of the plateau with sudden shortening of diastolic intervals in rabbit ventricular cells. Circ Res 1987; 60: 14–26.

    Article  PubMed  CAS  Google Scholar 

  20. Wohlfart B. Relationships between peak force, action potential duration and stimulus interval in rabbit myocardium. Acta Physiol Scand 1979; 106: 395–409.

    Article  PubMed  CAS  Google Scholar 

  21. Cohen IS, Daytner NB, Gintant GA, Kline RP. Time-dependent outward currents in the heart. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE, editors. The heart and cardiovascular system. New York: Raven Press, 1986: 637–671.

    Google Scholar 

  22. Hilgemann DW, Noble D. Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: reconstruction of basic cellular mechanisms. Proc R Soc Lond (Biol) 1987; 230: 163–205.

    Article  PubMed  CAS  Google Scholar 

  23. Wollmer P, Wohlfart B, Khan AR. Effects of 4-aminopyridine on contractile response and action potential of rabbit papillary muscle. Acta Physiol Scand 1981; 113: 183–187.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mugelli, A., Cerbai, E., Barbieri, M. (1995). Cardiac electrophysiology of propionyl-L-carnitine. In: De Jong, J.W., Ferrari, R. (eds) The Carnitine System. Developments in Cardiovascular Medicine, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0275-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0275-9_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4122-5

  • Online ISBN: 978-94-011-0275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics