Skip to main content

Myocardial carnitine deficiency in human cardiomyopathy

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 162))

Abstract

In the literature an important role for carnitine has been discussed in myocardial ischemia and several non-ischemic heart diseases. The presumably broad spectrum of carnitine effects in the heart is based on the central role of this compound in fatty acid oxidation and in the control of intermediary metabolism [1–3]. Long-chain acyl-CoA esters may only penetrate into the mitochon-drial matrix in the form of their carnitine esters, and intracellular concentrations of long-chain acyl-CoA and long-chain acylcarnitine as well as free CoA depend on the availability of free carnitine. Thus, this availability controls basic cellular functions such as energy production and energy transport from the mitochondria into cytoplasm. The interaction between carnitine and potentially toxic products of fatty acid metabolism, as long-chain acyl-CoA esters, may explain the protection of mitochondrial function and the modulation of the adenine nucleotide translocator activity by carnitine as well as its effects on the integrity and fluidity of sarcolemmal membranes.

“In heart failure, the myocardial carnitine level can decrease to concentrations in the range of the KM of carnitine palmityltransferase for free carnitine. Thus, in these cases a reduced availability of free carnitine may limit the transferase reaction and thereby fatty acid oxidation.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fritz IB. Carnitine and its role in fatty acid metabolism. In: Paoletti R, Kritchevsky D, editors. Advances in lipid research. New York: Academic Press, 1963: 285–334.

    Google Scholar 

  2. Bremer J. Carnitine — metabolism and functions. Physiol Rev 1983; 63: 1420–1481.

    PubMed  CAS  Google Scholar 

  3. Bremer J. In: Gran FC, editor. Cellular compartmentalization and control of fatty acid metabolism. New York: Academic Press, 1968: 65–68.

    Google Scholar 

  4. Challoner DR, Prols HG. Free fatty oxid oxidation and carnitine levels in diphteritic guinea pig myocardium. J Clin Invest 1972; 51: 2071–2076.

    Article  PubMed  CAS  Google Scholar 

  5. Wittels B, Bressler RJ. Biochemical lesion of diphteria toxin in the heart. J Clin Invest 1965; 44: 1639–1644.

    Article  PubMed  CAS  Google Scholar 

  6. Shug AL, Thomsen JH, Folts JD et al. Changes in tissue levels of carnitine and other metabolites during myocardial ischemia and anoxia. Arch Biochem Biophys 1978; 187: 25–33.

    Article  PubMed  CAS  Google Scholar 

  7. Regitz V, Shug AL, Fleck E. Defective myocardial carnitine metabolism in congestive heart failure secondary to dilated cardiomyopathy and to coronary, hypertensive and valvular heart diseases. Am J Cardiol 1990; 65: 755–760.

    Article  PubMed  CAS  Google Scholar 

  8. Pierpont MEM, Judd D, Goldenberg IF, Rings WS, Olivari MT, Pierpont GL. Myocardial carnitine in end-stage congestive heart failure. Am J Cardiol 1989; 64: 56–60.

    Article  PubMed  CAS  Google Scholar 

  9. Engel AG. Possible causes and effects of carnitine deficiency in man. In: Frenkel RA, McGarry JD, editors. Carnitine biosynthesis, metabolism and functions. New York: Academic Press, 1980: 271–286.

    Google Scholar 

  10. Boudin G, Mikol J, Guillard A, Engel AG. Fatal systemic carnitine deficiency with lipid storage in skeletal muscle, heart, liver and kidney. J Neurol Sci 1976; 30: 313–325.

    Article  PubMed  CAS  Google Scholar 

  11. Chapoy PR, Angelini C, Brown WJ, Stiff JE, Shug AL, Cederbaum SD. Systemic carnitine deficiency: a treatable inherited lipid-storage disease presenting as Reye’s syndrome. N Engl J Med 1980; 303: 1389–1394.

    Article  PubMed  CAS  Google Scholar 

  12. Cornelio F, Di Donato S, Peluchetti D et al. Fatal cases of lipid storage myopathy with carnitine deficiency. J Neurol Neurosurg Psych 1977; 40: 170–178.

    Article  CAS  Google Scholar 

  13. Karpati G, Carpenter S, Engel AG et al. The syndrome of systemic carnitine deficiency. Clinical, morphologic, biochemical, and pathophysiologic features. Neurology 1975; 25: 16–24.

    Article  PubMed  CAS  Google Scholar 

  14. Tripp ME, Katcher ML, Peters HA et al. Systemic carnitine deficiency presenting as familial endocardial fibroelastosis: a treatable cardiomyopathy. N Engl J Med 1981; 305: 385–390.

    Article  PubMed  CAS  Google Scholar 

  15. Regitz V, Hodach RJ, Shug AL. Carnitin-Mangel: Eine behandelbare Ursache kindlicher Kardiomyopathien. Klin Wochenschr 1982; 60: 393–400.

    Article  PubMed  CAS  Google Scholar 

  16. Treem WR, Stanley CA, Finegold DN, Haie DE, Coates PM. Primary carnitine deficiency due to a failure of carnitine transport in kidney, muscle, and fibroblasts. N Engl J Med 1988; 319: 1331–1336.

    Article  PubMed  CAS  Google Scholar 

  17. Waber LJ, Valle D, Neill C, Di Mauro S, Shug A. Carnitine deficiency presenting as familial cardiomyopathy: A treatable defect in carnitine transport. J Pediatr 1982; 101: 700–705.

    Article  PubMed  CAS  Google Scholar 

  18. Borum PR, Park JH, Law PK, Roelops RJ. Altered tissue carnitine levels in animals with hereditary muscular dystrophy. J NeurolSci 1978; 38: 113–121.

    Article  CAS  Google Scholar 

  19. Böhmer T, Rydning A, Solberg HE. Carnitine levels in human serum in health and disease. Clin Chim Acta 1974; 57: 55–61.

    Article  PubMed  Google Scholar 

  20. Angelini C, Lücke S, Cantarutti F. Carnitine deficiency of skeletal muscle: Report of a treated case. Neurology 1976; 26: 633–637.

    Article  PubMed  CAS  Google Scholar 

  21. Hart ZH, Chang CH, Di Mauro S, Farooki Q, Ayyar R. Muscle carnitine deficiency and fatal cardiomyopathy. Neurology 1978; 28: 147–151.

    Article  PubMed  CAS  Google Scholar 

  22. Van Dyke DH, Griggs RC, Markesberry W, Di Mauro S. Hereditary carnitine deficiency of muscle. Neurology 1975; 25: 154–159.

    Article  Google Scholar 

  23. Deacon JSR, Gilbert EF, Viseskul C, Herrmann J, Angevine JM, Albert AE. Familial cardiac lipidosis. Can Med Ass J 1979; 120: 181–194.

    Google Scholar 

  24. Di Mauro S, Di Mauro PM. Muscle carnitine palmityltransferase deficiency and myoglobinuria. Science 1973; 182: 929–931.

    Article  Google Scholar 

  25. Hostetler KY, Hoppel CL, Romine JS, Sipe JC, Gross SR, Higginbottom PA. Partial deficiency of muscle carnitine palmitoyltransferase with normal ketone production. N Engl J Med 1978; 298: 553–557.

    Article  PubMed  CAS  Google Scholar 

  26. Roe CR, Millington SD, Maltby DA, Kahler SG, Bohan TP. L-Carnitine therapy in isovaleric acidemia. J Clin Invest 1988; 74: 2290–2295.

    Article  Google Scholar 

  27. Hale DE, Batshaw ML, Coates PM. Long-chain acyl coenzyme A dehydrogenase deficiency: an inherited cause of nonketonic hypoglycemia. Pediatr Res 1985; 19: 666–671.

    PubMed  CAS  Google Scholar 

  28. Winter SC, Szabo-Aczel S, Curry CJR, Hutchinson HT, Hogue R, Shug A. Plasma carnitine deficiency. Clinical observations in 51 pediatric patients. Am J Dis Child 1987; 141: 660–665.

    PubMed  CAS  Google Scholar 

  29. Shug AL, Hayes B, Huth PJ et al. Changes in carnitine-linked metabolism during ischemia, thermal injury, and shock. In: Frenkel RA, McGarry JD, editors. Carnitine biosynthesis, metabolism, and functions. New York: Academic Press, 1980: 321–339.

    Google Scholar 

  30. Shug AL. Protection from adriamycin-induced cardiomyopathy in rats. Z Kardiol 1987; 76(Suppl 5): 46–52.

    PubMed  CAS  Google Scholar 

  31. Paulson DJ, Schmidt MJ, Traxler JS, Ramacci MT, Shug AL. Improvement of myocardial function in diabetic rats after treatment with L-carnitine. Metabolism 1984; 33: 358–363.

    Article  PubMed  CAS  Google Scholar 

  32. Paulson DJ, Shug AL. Effects of myocardial ischemia and long chain acyl CoA on mitochondrial adenine nucleotide translocator. In: Ferrari R, Katz A, Shug S, editors. Myocardial ischemia and lipid metabolism. New York: Plenum Press, 1984: 185–202.

    Chapter  Google Scholar 

  33. Keene BW, Panciera DL, Atkins CE, Regitz V, Schmidt MJ, Shug AL. Myocardial L-carnitine deficiency in a family of dogs with dilated cardiomyopathy. J Am Vet Med Assoc 1991; 198: 647–650.

    PubMed  CAS  Google Scholar 

  34. Whitmer JT. L-Carnitine treatment improves cardiac performance and restores high-energy phosphate pools in cardiomyopathic Syrian hamster. Circ Res 1987; 61: 396–408.

    Article  PubMed  CAS  Google Scholar 

  35. Regitz V, Bossaller C, Strasser R, Müller M, Shug AL, Fleck E. Metabolie alterations in end-stage and less severe heart failure — myocardial carnitine decrease. J Clin Chem Clin Biochem 1990; 28: 611–617.

    PubMed  CAS  Google Scholar 

  36. Conte A, Hess OM, Maire R et al. Klinische Bedeutung des Serumcarnitins für den Verlauf und die Prognose der dilatativen Kardiomyopathie. Z Kardiol 1987; 76: 15–24.

    PubMed  CAS  Google Scholar 

  37. Tripp ME, Shug AL. Plasma carnitine concentrations in cardiomyopathy patients. Biochem Med 1984; 32: 199–206.

    Article  PubMed  CAS  Google Scholar 

  38. Chen SH, Lincoln SD. Increased serum carnitine concentration in renal insufficiency. Clin Chem 1977; 23: 278–280.

    PubMed  CAS  Google Scholar 

  39. Fritz IB.: Gran C, editor. Cellular compartmentalization and control of fatty acid metabolism. New York: Academic Press, 1968: 39–63.

    Google Scholar 

  40. Vary TC, Neely JR. Characterization of carnitine transport in isolated perfused adult rat hearts. Am J Physiol 1982; 244: H585–H592.

    Google Scholar 

  41. Bressler R, Witteis B. The effect of diphtheria toxin on carnitine metabolism in the heart. Biochim Biophys Acta 1965; 104: 39–45.

    Article  PubMed  CAS  Google Scholar 

  42. Molstadt P, Bohmer T, Eiklid K. Specificity and characteristics of the carnitine transport in human heart cells (CCL 27) in culture. Biochim Biophys Acta 1977; 471: 296–304.

    Article  Google Scholar 

  43. Regitz V, Müller M, Strasser R et al. Untersuchung des Myokardstoffwechsels bei Herzinsuffizienz — Variabilität von Metabolitkonzentrationen und Enzymaktivitäten im Myokard. Z Herz Thorax Gefäßchir 1989; 3: 107–114.

    Google Scholar 

  44. Parvin R, Pande SV. Microdetermination of (-)carnitine and carnitine acetyltransferase activity. Anal Biochem 1977; 79: 190–201.

    Article  PubMed  CAS  Google Scholar 

  45. Pierpont GL, Francis GS, DeMaster EG, Levine TB, Bolman RM, Cohn JN. Elevated left ventricular myocardial dopamine in preterminal idiopathic dilated cardiomyopathy. Am J Cardiol 1983; 52: 1033–1035.

    Article  PubMed  CAS  Google Scholar 

  46. Bittl JA, Weisfeldt ML, Jacobus WE. Creatine kinase of heart mitochondria. The progressive loss of enzyme activity during in vivo ischemia and its correlation to depressed myocardial function. J Biol Chem 1985; 260: 208–214.

    CAS  Google Scholar 

  47. Suzuki Y, Masumura Y, Kobayashi A et al. Myocardial carnitine deficiency in chronic heart failure. Lancet 1982; 1: 116 (Lett to the Ed).

    Article  PubMed  CAS  Google Scholar 

  48. Spagnoli LG, Corsi M, Villaschi S, Palmieri G, Maccari F. Myocardial carnitine deficiency in acute myocardial infarction. Lancet 1982; 1: 1419–1420 (Lett to the Ed).

    Article  PubMed  CAS  Google Scholar 

  49. Patel AK, Thomsen JH, Kosolcharoen PK, Shug AL. Myocardial carnitine status: Clinical, prognostic and therapeutic significance. In: Ferrari R, Di Mauro S, Sherwood G, editors. L-Carnitine and its role in medicine: From function to therapy. London: Academic Press, 1992: 325–335.

    Google Scholar 

  50. Idell-Wenger JA, Grotyohann LW, Neely JR. Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem 1978; 253: 4310–4318.

    PubMed  CAS  Google Scholar 

  51. Pogwizd SM, Corr PB. Reentrant and nonreentrant mechanisms contribute to arrhythmogenesis during early myocardial ischemia: Results using three-dimensional mapping. Circ Res 1987; 61: 352–371.

    Article  PubMed  CAS  Google Scholar 

  52. Corr PB, Gross RW, Sobel BE. Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res 1984; 55: 135–151.

    Article  PubMed  CAS  Google Scholar 

  53. Corr PB, Creer MH, Yamada KA, Saffitz JE, Sobel BE. Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. J Clin Invest 1989; 83: 927–936.

    Article  PubMed  CAS  Google Scholar 

  54. Heathers GP, Yamada KA, Kanter EM, Corr PB. Long-chain acylcarnitines mediate the hypoxia-induced increase in alpha 1-adrenergic receptors on adult canine myocytes. Circ Res 1987; 61: 735–746.

    Article  PubMed  CAS  Google Scholar 

  55. Knabb MT, Saffitz JE, Corr PB, Sobel BE. The dependence of electrophysiological derangements on accumulation of endogenous long-chain acyl carnitine in hypoxic neonatal rat myocytes. Circ Res 1986; 58: 230–240.

    Article  PubMed  CAS  Google Scholar 

  56. Wittels B, Spann Jr JF. Defective lipid metabolism in the failing heart. J Clin Invest 1968; 47: 1787–1794.

    Article  PubMed  CAS  Google Scholar 

  57. Nägele S, Hockerts T, Bögelmann G. Untersuchungen zum Stoffwechsel des Herzmuskels bei Ischämie. Klin Wochenschr 1963; 41: 1020–1030.

    Article  Google Scholar 

  58. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 1974; 36: 413–459.

    Article  PubMed  CAS  Google Scholar 

  59. Neely JR, Denton RM, England PJ, Randle PJ. The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Biochem J 1972; 128: 147–159.

    PubMed  CAS  Google Scholar 

  60. Cahn RD, Kaplan NO, Levine L, Zwilling E. Nature and development of lactic dehydrogenases. Science 1962; 136: 962–969.

    Article  PubMed  CAS  Google Scholar 

  61. Regitz V, Fleck E. Myocardial adenine nucleotide concentrations and myocardial norepinephrine content in patients with heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. Am J Cardiol 1992; 69: 1574–1580.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Regitz-Zagrosek, V., Fleck, E. (1995). Myocardial carnitine deficiency in human cardiomyopathy. In: De Jong, J.W., Ferrari, R. (eds) The Carnitine System. Developments in Cardiovascular Medicine, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0275-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0275-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4122-5

  • Online ISBN: 978-94-011-0275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics