Skip to main content
  • 71 Accesses

Abstract

Some forms of artificial neural network models develop representations that have a high visual information content. An example of this kind of network is the Kohonen Feature Map (KFM). This paper describes how a KFM can be used in a model that categorises memorised sequential patterns of notes into representations of key and degrees of a musical scale. These patterns are derived from abstractions of musical sounds identified with pitch and interval. Both key and degree are important musical structures in the cognitive organisation of tonality. The acquisition of tonal organisation for music is analogous to the acquisition of language. The representations developed within the KFM form a map that can be seen to correspond directly with the images used by musicians to represent key relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes, J. (1989). Aristotle. In Gregory, R. (ed.) The Oxford Companion to the Mind, 38–40 Oxford University Press: Oxford.

    Google Scholar 

  • Bharucha, J. (1987). Music Cognition and Perceptual Facilitation: A Connectionist Framework. Music Perception 5(1): 1–30.

    Article  Google Scholar 

  • Bregman, A. (1990). Auditory Scene Analysis, MIT Press: Cambridge, MA.

    Google Scholar 

  • Carpenter, G. & Grossberg, S. (1987). ART2: Self-Organization of Stable Category Recognition Codes for Analog Input Patterns. Applied Optics 26(23), 4919–4930.

    Article  Google Scholar 

  • Deutsch, D. (1975). Facilitation by Repetition in Recognition Memory for Tonal Pitch. Memory and Cognition 3: 263–266.

    Article  Google Scholar 

  • Deutsch, D. (1978). Delayed Pitch Comparisons and the Principle of Proximity. Perception and Psychophysics 23: 227–230.

    Article  Google Scholar 

  • Dowling, W. (1984). Assimilation and Tonal Structure: Comment on Castellano, Bharucha, and Krumhansl. Journal of Experimental Psychology 113(3): 417–420.

    MathSciNet  Google Scholar 

  • Dowling, W. (1988). Tonal Structure and Children’s Early Learning of Music. In Sloboda, J. (ed.) Generative Processes in Music. Oxford University Press.

    Google Scholar 

  • Gjerdingen, R. (1989a). Using Connectionist Models to Explore Complex Musical Pattern. Computer Music Journal 13(3): 67–75.

    Article  Google Scholar 

  • Gjerdingen, R. (1990). Categorisation of Musical Patterns by Self-Organizing Neuronlike Network. Music Perception 7(4): 339–370.

    Article  Google Scholar 

  • Griffith, N. (1993a). Modelling the Acquisition and Representation of Musical Tonality as a Function Of Pitch-Use through Self-Organising Artificial Neural Networks. PhD thesis, University of Exeter, Department of Computer Science. Unpublished.

    Google Scholar 

  • Griffith, N. (1993b). Representing the Tonality of Musical Sequences Using Neural Nets. In Proceedings of The First International Conference on Cognitive Musicology, 109–132. Jyvaskyla, Finland.

    Google Scholar 

  • Griffith, N. (1994). The Development of Tonal Centres and Abstract Pitch as Categorisations of Pitch-Use. Connection Science 6(3&4): 155–176.

    Article  Google Scholar 

  • Grossberg, S. (1978). Behavioral Contrast in Short Term Memory: Serial Binary Memory Models or Parallel Continuous Memory Models. Journal of Mathematical Psychology 17: 199–219.

    Article  Google Scholar 

  • Hinton, G. E. (1989), Connectionist Learning Procedures. Artificial Intelligence 40: 185–234.

    Article  Google Scholar 

  • Holtzmann, S. R. (1977). A Program for Key Determination. Interface.

    Google Scholar 

  • Huron, D. & Parncutt, R. (1993). An Improved Key-Tracking Method Encorporating Pitch Salience and Echoing Memory. Psychomusicology.

    Google Scholar 

  • Kohonen, T. (1989). Self-Organization and Associative Memory. Springer Verlag: Berlin. Krumhansl, C. (1990a), Cognitive Foundations of Musical Pitch. Oxford University Press: Oxford.

    Book  Google Scholar 

  • Krumhansl, C. (1990b). Tonal Hierarchies and Rate Intervals in Music Cognition. Music Perception 7: 309–324.

    Article  Google Scholar 

  • Leman, M. (1990). Emergent Properties of Tonality Functions by Self-Organization. Interface 19: 85–106.

    Article  Google Scholar 

  • Leman, M. (1992). The Theory of Tone Semantics: Concept, Foundation, and Application. Minds and Machines 2(4): 345–363.

    Article  Google Scholar 

  • Longuet-Higgins, H. & Steedman, M. (1970). On Interpreting Bach. Machine Intelligence 6: 221–239.

    Google Scholar 

  • Parncutt, R. (1989). Harmony: Psychoacoustic Approach. Springer Verlag: Berlin.

    Book  Google Scholar 

  • Radeau, M. 91994). Auditory-Visual Spatial Interaction and Modularity. International Journal of Psychology.

    Google Scholar 

  • Ritter, H. (1990). Self-Organizing Maps for Internal Representations. Psychological Research 52: 128–136.

    Article  Google Scholar 

  • Rumelhart, D. & Zipser, D. (1986). Feature Discovery by Competitive Learning. In Rumelhart, D. & McClelland, J. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1, Foundations, MIT Press: Cambridge, MA.

    Google Scholar 

  • Shepard, R. (1982). Geometric Approximations to the Structure of Musical Pitch. Psychological Review 89(4): 305–333.

    Article  Google Scholar 

  • Shepard, R. (1984). Ecological Constraints on Internal Representation: Resonant Kinematics of Perceiving, Imagining, Thinking, and Dreaming. Psychological Review 91: 417–447.

    Article  Google Scholar 

  • Shepard, R. (1987). Toward a Universal Law of Generalisation for Psychological Science. Science 237: 1317–1323.

    Article  MathSciNet  MATH  Google Scholar 

  • Simon, H. A. (1968). Perception du pattern musical par auditeur. Science de l’ art V(2): 28–34.

    Google Scholar 

  • Stein, B. & Meredith, M. (1993). The Merging of the Senses, MIT Press: Cambridge, MA.

    Google Scholar 

  • Stravinsky, I. (1970). The Poetics of Music. Harvard Press. Translated by Arthur Knodel and Ingolf Dahl.

    Google Scholar 

  • Tattershall, G. (1989). Neural Map Applications. In Alexander I. (ed.) Neural Computing Architectures, Chapter 4. MIT Press: Cambridge, MA.

    Google Scholar 

  • Terhardt, E., Stoll, G. & Seewann, M. (1982a). Algorithm for Extraction of Pitch and Pitch Salience from Complex Tonal Signals. The Journal of the Acoustical Society of America 73(3): 679–688.

    Article  Google Scholar 

  • Terhardt, E., Stoll, G. & Seewann, M. (1982b). Pitch of Complex Signals According to Virtualpitch Theory: Test, Examples, and Predictions. The Journal of the Acoustical Society of America 71(3): 671–678.

    Article  Google Scholar 

  • Todd, N. P. M. & Brown, G. (in press), Visualization of Rhythmic Structure. Artificial Intelligence Review, special issue on Integration of Natural Language and Vision Processing, ed. Paul Mc Kevitt.

    Google Scholar 

  • Ulrich, W. (1977). The Analysis and Synthesis of Jazz by Computer. In Proceedings of The 5th. IJCAI,865–872.

    Google Scholar 

  • Von der Malsburg, C. (1973). Self-Organizing of Orientation Sensitive Cells in the Striate Cortex. Kybernetic 14: 85–100.

    Article  Google Scholar 

  • Winograd, T. (1968). Linguistics and the Computer Analysis of Tonal Harmony. Journal of Music Theory 12(3): 2–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Griffith, N. (1995). Connectionist Visualisation of Tonal Structure. In: Mc Kevitt, P. (eds) Integration of Natural Language and Vision Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0273-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0273-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4121-8

  • Online ISBN: 978-94-011-0273-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics