Some Basic Elements of the Shakedown Theory

  • B. Nayroles
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 36)


The aim of the present exposition is to summarize the main algebraic properties of classics plasticity, and thus help the understanding of the mathematical context of shakedown studies Hence nothing new must be expected, except some few improvements concerning presenta tion and hypothesis enlargement ; for instance the new concept of “elastic sanctuary” ha recently been introduced by the author and D. Weichert [1993] in order to give a maximal extension to the assumptions which ensure the classical proofs. We shall stay within th linear framework generated by the hypothesis that displacements and strains remain small in the vicinity of some strained configuration.


Virtual Work Plastic Strain Rate Elasticity Domain Perfect Plasticity Sweeping Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1964 Koiter, W.T,. “General theorems for elastic-plastic solids “, Progress in Solid Mechanics, 1, Sneddon & Hill, North Holland P. C.Google Scholar
  2. 1969 Ceradini, G,. “Sull'adattamento dei corpi elasto-plastici sogetti ad azioni dinamiche”, Giornale del Genio Civile, 415.Google Scholar
  3. 1973 Moreau, J.J., “On Unilateral Constraints, Friction and Plasticity” Lecture Notes, CIME June, Edizione Cremonese.Google Scholar
  4. 1976 Debordes, O., et Nayroles, B., “Sur la théorie et le calcul à l'adaptation des structures élastoplastiques”,. J. de Mécanique, 15, N° 1.Google Scholar
  5. 1976 Johnson, C., “Existence theorems for plasticity problems”, J. Math. Pures et Appl., 55, pp. 431–444.Google Scholar
  6. 1978 Strang, G,. “A family of model problems in plasticity”, Proc. Symp. Comp. Meth. in AppL Sci. Ed. R. Glowinski an J.L. Lions, Lecture Notes in Math., 704. pp. 292–308.Google Scholar
  7. 1979 Suquet, P., “Un espace fonctionnel pour les équations de la plasticité”, Ann. Fac. Sci. Toulouse, 1. pp. 77–87.Google Scholar
  8. 1981 Debordes, O., “Przystosowanie ukladow sprezysto-idealnie plastycznych”, Metody analizy funkcjonalnej w plastycznosci, Ossolineum.Google Scholar
  9. 1981 Nayroles, B,. “Elementy analizy wypuklejw mechanice ciala stalego”, Metody analizy funkcjonalnej w plastycznosci, Ossolineum.Google Scholar
  10. 1987 KÖnig, J.A., “Shakedown of Elastic-Plastic Structures”, Elsevier, Amsterdam.Google Scholar
  11. 1988 Suquet, P., “Discontinuities and Plasticity”, Non Smooth Mechanics and Applications, Ed. J.J. Moreauand P.D. Panagiotopoulos, Int. Centre for Mech. Sci. Courses and Lectures, 302, pp. 280–340.Google Scholar
  12. 1993 Nayroles, B., and Weichert, D., “La notion de sanctuaire d'élasticité et l'adaptation des structures “, C. R. Acad.Sci. Paris, 316, Série II, pp. 1493–1498.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • B. Nayroles
    • 1
  1. 1.Laboratoire Sols-Solides-StructuresGrenobleFrance

Personalised recommendations