Shakedown for systems of kinematic hardening materials

  • E. Stein
  • Y. J. Huang
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 36)


The paper deals with the shakedown of systems with kinematic hardening materials. Analytical, numerical and experimental methods to solve shakedown problems will be introduced and discussed. Some examples are treated with these methods. Comparison shows that the results of these methods are in good agreement.


Gaussian Point Kinematic Hardening Plane Stress Problem Shakedown Analysis Overlay Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1924 Masing, G., ”Zur Heyn'schen Theorie der Vestigung der Metalle durch verborgen elastische Spannungen”, Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern, 3, pp. 231–239.Google Scholar
  2. 1932 Bleich, H., ”Über die Bemessung statisch unbestimmter Stahltragwerke unter Berücksichtigung des elastisch-plastischen Verhalten des Baustoffes”, Der Bauingenieur 19/20, pp. 261–267.Google Scholar
  3. 1938a Melan, E., ”Der Spannungszustand eines Mises-Henckyschen Kontinuums bei veränderlicher Belastung”, Sitzber. Akad. Wiss. Wien, IIa147, pp. 73–78.Google Scholar
  4. 1938b Melan, E., ”Zur Plastizität des räumlichen Kontinuums”, Ing.-Arch. 8, pp. 116–126.Google Scholar
  5. 1950 Neal, B.G., ”Plastic collapse and shake-down theorems for structures of strain-hardening material”, J. Aero. Sci., 17, pp. 297–306.Google Scholar
  6. 1953 Besseling, J. F., ”A theory of plastic flow for anisotropic hardening in plastic deformation of an initially isotropic material”. National aeronautical research institute, Amsterdam, Report pp. 410.Google Scholar
  7. 1956 Koiter, W.T., ”A new general theorem on shake-down of elastic-plastic structures”, Proc. Koninkl. Akad. Wet. B 59, pp. 24–34.Google Scholar
  8. 1956a Prager, W., ”A new method of analyzing stresses and strains in work-hardening plastic solids”, Journal of Applied Mechanics, pp. 493–496.Google Scholar
  9. 1956b Prager, W., ”Shakedown in elastic-plastic media subjected to cycles of load and temperature”, Proc. Symp. Plasticita nella Scienza delle Costruzioni, Bologna, pp. 239–244.Google Scholar
  10. 1957 Rozenblum, V.I., ”On shakedown of uneven heated elastic-plastic bodies” (in Russian), Izw. Akad. Nauk SSSR. OTN, Mekh. Mash., 7, pp. 136–138.Google Scholar
  11. 1959 Coffin, L. F.O and Tavernelli, J. F., ”The cycle strain and fatigue of metals”, Transactions of society of AIME. 215, pp. 794–807.Google Scholar
  12. 1959 Ziegler, H., ”A modification of Prager's hardening rule”. Quart. Appl. Math., 17, pp. 55–65 (1959).Google Scholar
  13. 1965 Paris, P. C. and Sih, G. C., ”Fracture toughness testing and its applications”, ASTM STP 381, American Society for testing and materials, pp. 30–83.Google Scholar
  14. 1966 Frederick, C.O. and Armstrong, P. J., ”Convergent internal stresses and steady cyclic states of stress”, J. Srain Anal., 2, pp. 154–160.Google Scholar
  15. 1967 Iwan, W. D., ”On a class of models for the yielding behavior of continuous and composite systems”, Journal of Applied Mechanics, pp. 612–617.Google Scholar
  16. 1967 MrÓZ, Z., ”On the description of anisotropic workhardening”, J. Mech. Phys. Solids 15, pp. 163–175.Google Scholar
  17. 1969 Ceradini, G., ”Sull' adattamento dei corpi elasto-plastici soggetti ad azioni dinamiche”, Giorn. Genio Civile 106, No. 4/5, pp. 239–250.Google Scholar
  18. 1969 KÖNig, J.A., ”A shakedown theorem for temperature dependent elastic moduli”, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 17, pp. 161–165.Google Scholar
  19. 1972 Maier, G., ”A shakedown matrix theory allowing for workhardening and second-order geometric effects”, Proc. Foundations of Plasticity, Warsaw.Google Scholar
  20. 1972 Zienkiewicz, O. C, Najak, G. C. and Owen, D. R. J., ”Composite and ‘overlay’ models in numerical analysis of elasto-plastic continua”, Pro. of Int. Symp. on Foundations of plasticity, ed. A. Sawczuk, Noorhoff Publishing Leyden.Google Scholar
  21. 1973 Corradi, L. and Maier, G., ”Inadaption theorems in the dynamics of elastic-workhardening structures”, Ing.-Arch. 43, pp. 44–57.Google Scholar
  22. 1975 Dafalias, Y.F. and Popov, E.P., ”A model of nonlinearly hardening materials for complex loading”, Acta Mechanica 21, pp. 173–192.Google Scholar
  23. 1981 Schittkowski, K., ”The nonlinear programming method of Wilson, Han and Powell with an augmented Lagrangian type line search function”, Numer. Math., 38, pp. 83–127.Google Scholar
  24. 1986 Weichert, D., ”On the influence of geometrical nonlinearities on the shakedown of elastic-plastic structlures”, Int. J. Plasticity, 2, pp. 135–148.Google Scholar
  25. 1990 Scheer, J., Scheibe, H. J. and Ruch, D., ”Untersuchung von Trägerschwäschungen unter wiederholter Belastung bis in den plastischen Bereich”, Bericht Nr. 6099, Institut für Stahlbau, TU Braunschweig.Google Scholar
  26. 1990 Scheibe, H. J., ”Zum zyklischen Materialverhalten von Baustahl und dessen Berücksichtigung in Konstruktionsberechnung”, Ph.D. thesis, Institut für Stahlbau, Universität Braunschweig.Google Scholar
  27. 1992 Mahnken, R., ”Duale Methoden für nichtlineare Optimierungsprobleme in der Strukturmechanik”, Ph.D. thesis, Institut für Baumechanik und Numerische Mechanik, Universität Hannover.Google Scholar
  28. 1992a Stein, E., Zhang G. and KÖNIG, J.A., ”Shakedown with nonlinear hardening including structural computation using finite element method”, Int. J. Plasticity, 8, pp. 1–31.Google Scholar
  29. 1992b Stein, E. and Zhang, G., ”Theoretical and numerical shakedown analysis for kinematic hardening materials”, in Proc. 3rd Conf. on Computational Plasticity, Barcelona, pp. 1–25.Google Scholar
  30. 1992 Zhang, G., ”Einspielen und dessen numerische Behandlung von Flächentragwerken aus ideal plastischem bzw. kinematisch verfestigendem Material”, Ph.D. thesis, Institut für Baumechanik und Numerische Mechanik, Universität Hannover.Google Scholar
  31. 1993a Stein, E., Zhang, G. and Huang, Y., ”Modeling and computation of shakedown problems for nonlinear hardening materials”, Computer Methods in Mechanics and Engineering, 1-2, pp. 247–272.Google Scholar
  32. 1993b Stein, E., Zhang, G. and Mahnken, R., ”Shake-down analysis for perfectly plastic and kinematic hardening materials, in Stein, E. (ed.) Progress in computational analysis of inelastic structures”, Springer-Verlag, Wien-New York, CISM courses and lecture, 321, pp. 175–244.Google Scholar
  33. 1994 Stein, E. and Huang, Y., ”An analytical method to solve shakedown problems with linear kinematic hardening materials”, Int. J. of solids and structures, 31, No. 18, pp. 2433–2444.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • E. Stein
    • 1
  • Y. J. Huang
    • 1
  1. 1.HannoverFederal Republic of Germany

Personalised recommendations