Advertisement

Case Studies on the Influence of Geometric Effects on the Shakedown of Structures

  • Jean-Bernard Tritsch
  • Dieter Weichert
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 36)

Abstract

The classical theory of shakedown as formulated by MELAN [1938] and KOITER [1960] is based on the assumptions of elastic-perfectly plastic or unlimited linear hardening material behaviour within the framework of geometrically linear theory. Out of the different extensions of these theorems (for review see, e.g. COHN & MAIER [1979], KÖNIG & MAIER [1981], MAIER & LLOYD SMITH [1986], KÖNIG [1987], GROSS-WEEGE [1990]), here the problem of the influence of geometrical changes of the considered structures during the loading procedure is addressed. Indeed, geometrically linear theory is invalid already for thinwalled plates and shells when the displacements of the midsurface are of the same order as the wall thickness. This, however, is a very common situation if thinwalled structures are loaded beyond their elastic limit.

Keywords

Conical Shell Shakedown Analysis Shakedown Limit Thinwalled Plate Hybrid Numerical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1938 Melan, E., “Zur Plastizität des räumlichen Kontinuums”, Ing. Arch. 9, pp 116–126.Google Scholar
  2. 1960 Koiter, W.T., “General theorems for elastic-plastic solids”, In Progress in solid mechanics, (Edited by I.N. Sneddon and R. Hill), 165–221, North Holland, Amsterdam.Google Scholar
  3. 1964 Vlasov, V.Z., “General theory of shells and its applications in engineering”, NASA Technical Translation TTF-99, Washington.Google Scholar
  4. 1973 Maier, G., “A shakedown matrix theory allowing for work-hardening and second-order geometrical effects”, in Foundation of Plasticity, 417–433.Google Scholar
  5. 1975 Halphen, B. & Nguyen Quoc Son, “Sur les matériaux standards généralisés”, Journal de mécanique, Vol 14, n°l, 39–63.Google Scholar
  6. 1975 Pierre, Da, Lowe M.J., “Mathematical programming via augmented Lagrangians”, London: Addison-Wesley.Google Scholar
  7. 1979 Cohn, M.Z., Maier, G., “Engineering plasticity by Mathematical Programming”, Pergamon Press, New York.Google Scholar
  8. 1980 KöNig, J.A., “On the stability of the incremental collapse process”, Arch. Inz. Lad, 27, 1, 219–229.Google Scholar
  9. 1980 Morelle, P., “Étude; expérimentale et numérique (par éléments finis) de l'adaptation plastique (shakedown) des structures minces axisymétriques”, travail de fin d'étude, Laboratoire de Mécanique des matériaux et stabilité des constructions, Liège.Google Scholar
  10. 1981 König, J.A. & Maier, G., “Shakedown analysis of elastoplastic structures: A review of recent developments”, Nuclear Engineering and design, 66, 81–95.Google Scholar
  11. 1984 König, J.A., “Stability of the incremental collapse”, In: Inelastic Structures under Variable Loads (Eds. C. Polizzotto, A. Sawczuk), 329–344, COGRAS, Palerme, (1984).Google Scholar
  12. 1984 Weichert, D., “Shakedown at finite displacements; a note on Melan's theorem”, Mech. Res. Comm. 11, 121–127.Google Scholar
  13. 1986 Maier, G., Lloyd Smith, D., “Update to Mathematical Programming Applications to Engineering Plastic Analysis”, In Steele, C.R. & Springer, G.S. (eds), Applied Mechanics Update, ASME, New York, 377–383.Google Scholar
  14. 1986 Weichert, D.: “On the influence of geometrical nonlinearities on the shakedown of elastic-plastic structures”, Int. J.Plasticity, Vol.2, n°2, 135–148.Google Scholar
  15. 1987 König, J.A., “Shakedown of Elastic-Plastic Structures”, Elsevier, Amsterdam.Google Scholar
  16. 1988 Gross-Weege, J.: “Zum Einspielverhalten von Flächentragwerken”, Mitteilungen aus dem Institut für Mechanik n°58, Ruhr-Universität Bochum.Google Scholar
  17. 1988 König J. A. & Siemaszko, A., “Strainhardening effects in shakedown processes”, Ing. Archiv, 58, 58–66.Google Scholar
  18. 1988 Weichert, D. & Gross-Weege, J.: “The numerical assessement of elastic-plastic sheets under variable mechanical and thermal loads using a simplified two-surface yield condition”, Int.J.Mech.Sci, Vol.30, n°10, 757–767.Google Scholar
  19. 1990 Gross-Weege, J., “A unified formulation of statical shakedown criteria for geometrically nonlinear problems”, Int. J.Plasticity, Vol 6, n°4, 433–447.Google Scholar
  20. 1990 Saczuk, J. & Stumpf, H.: “On statical shakedown theorems for non-linear problems”, Mitteilungen aus dem Institut für Mechanik, Nr.47, Ruhr-Universität Bochum.Google Scholar
  21. 1993 Tritsch, J.-B. & Weichert, D., “Shakedown of Elastic-Plastic Structures at Finite Deformations — a Comparative Study of Static Shakedown Theorems”, ZAMM, Z. angew. Math. Mech., 73, 4-5, T00F6–T312.Google Scholar
  22. 1993 Tritsch, J.-B., “Analyse d'adaptation des structures élasto-plastiques avec prise en compte des effets géométrique/Shakedown analysis of elastic-plastic structures accounting for geomtrical effects”, Ph.D-Thesis, Université des Sciences et Technologies de Lille, Lille.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Jean-Bernard Tritsch
    • 1
  • Dieter Weichert
    • 1
  1. 1.L.M.L. (EUDIL)-CNRS URA 1441Université des Sciences et Technologies de LilleVilleneuve d'AscqFrance

Personalised recommendations