Extremum Problems in Shakedown Theory

  • Jacov Kamenjarzh
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 36)


The problem of shakedown safety factor calculation is considered in the framework of convex analysis, which leads to the formulation of an upper bound kinematic method making use of time-independent velocity fields. An explicit formula for the upper bound is derived for the shakedown problem with a polyhedron set of variable loads. Conditions are established under which the infimum of upper bounds over a set of regular velocity fields equals the safety factor. Convergence of finite-element approximations to the safety factor is proved.


Safety Factor Yield Surface Extremum Problem Internal Approximation Elastic Stress Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1938 Melan, E., “Theorie Statisch Unbestimmter Tragewerke aus Idealplastischem Baustoff”, Sitzungsbericht der Academie der Wissenschaften (Wien) Abt IIA, 145, 195.Google Scholar
  2. 1960 Koiter, W.T., “General Theorems for elastic-plastic bodies”, in: Progress in Solid Mechanics, Sneddon, I. and Hill, R.(eds.), Vol.1, North Holland, Amsterdam.Google Scholar
  3. 1968 Rockafellar, R.T., “Integrals which are Convex Functionals”, Pacific J.Math., 24, 525.Google Scholar
  4. 1969 Chiras, A.A., “Linear Programming Methods in Analysis of Elastic-Plastic Systems”, Stroyizdat, Leningrad (in Russian).Google Scholar
  5. 1971 Golstein, E.G., Duality Theory in Mathematic Programming and its Applications, Nauka, Moscow (in Russian).Google Scholar
  6. 1971 Nayroles, B. “Quelques Applications Variationelles de 1a Theorie des Fonctiones Duales a la Mécanique des Solids”, J.Mecanique, 10, 2, 263.Google Scholar
  7. 1973 Maier, G., “A Shakedown Matrix Theory Allowing for Workhardening and Second-Order Geometrical Effects”, in: Sawczuk, A. (ed.), Foundations of Plasticity, p. 413, Noordhoff Int. Publ., Groningen.Google Scholar
  8. 1974 Corradi, L. and Zavelani A., “A Linear Programming Approach to Shakedown Analysis of Structures”, Comput. Meths. Appl. Mech. Engng., 3, 37.Google Scholar
  9. 1975 Martin, J.B., “Plasticity, Fundamentals and General Results”, The MIT Press, Cambridge, Ma.Google Scholar
  10. 1976 Debordes, O. and Nayroles, B., “Sur 1a Theorie et 1e Calcul a l'Adaptation des Structures Elasto-plastiques”, J.Mécanique 15, 1, 1.Google Scholar
  11. 1976 Ekeland, I. and Temam, R.,“Convex Analysis and Variational Problems”, North Holland, Amsterdam.Google Scholar
  12. 1978 Ciarlet, P.,” The Finite Element Method for Elliptic Problems”, North Holland, Amsterdam.Google Scholar
  13. 1979 Mercier, B., “Numerical Methods for Viscous-plastic Problems”, in: Lions J.-L. and Marchuk, G.I. (eds.), Numerical Methods in Applied Mathematics, Nauka, Novosibirsk (in Russian).Google Scholar
  14. 1980 Gokhfeld, D.A. and CHERNIAVSKY, O.F., “Limit Analysis of Structures at Thermal Cycling”, Sijthoff and Nordhoff, Alphen au den Rejn, The Netherlands.Google Scholar
  15. 1980 Kamenjarzh,.J., “On Dual Problems in the Theory of Limit Loads for Perfectly Plastic Bodies”, Sov. Phys. Dokl., 24(30), 177.Google Scholar
  16. 1981 Kamenjarzh, J., “Stresses in Incompressible media. Equivalent Formulations of Perfect Plasticity Problem”, Sov. Phys. Dokl., 26(11), 1051.Google Scholar
  17. 1991 Polizzotto, C, Borino G., Caddemi, S., and Fuschi, P., “Shakedown Problems for Material Models with Internal Variables”, Eur. J. Mech., A: Solids, 10, 6, 621.Google Scholar
  18. 1992 Kamenjarzh, J. and Weichert, D., “On Kinematic Upper Bounds for the Safety Factor in Shakedown Theory”, Intern. J. Plasticity, 8, 827.Google Scholar
  19. 1992 Kamenjarzh, J., and Merzljakov, A., “On Dual Extremum Problems in Shakedown Theory”, Sov.Phys.Dokl.,325, 1.Google Scholar
  20. 1994 Kamenjarzh, J. and Merzljakov, A., “On Kinematic Methods in Shakedown Theory. Part I. Duality of Extremum Problems. Part II. Modified Kinematic Method.” Intern.J. Plasticity, (to appear).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Jacov Kamenjarzh
    • 1
  1. 1.School of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations