On Shakedown Theorems in the Presence of Signorini Conditions and Friction

  • Józef Joachim Telega
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 36)


The aim of this contribution is to study shakedown of structures when contact conditions are imposed on a part of the boundary. Three cases have been investigated: 1. Signorini’s conditions without friction, 2. Friction with prescribed distribution of normal stress, and 3. Signiorini’s conditions with friction.


Residual Stress Variational Inequality Unilateral Contact Normal Contact Stress Nonsmooth Mechanics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1970 Rockafellar, R.T., Convex Analysis, Princeton University Press, Princeton.Google Scholar
  2. 1972 Telega, J.J., Perfectly plastic media acted upon by multi-parameter loads, Eng. Transactions, 20, 241, in Polish.Google Scholar
  3. 1976 DÉBORDES, O., NAYROLES, B., Sur la théorie et le calcul à l'adaptation des structures élastoplastiques, J. de Méc, 15, 1.Google Scholar
  4. 1977 Mercier, B., Sur la théorie et l'analyse numérique des problèmes de plasticité, Thèse, Université Pierre et Marie Curie, Paris 6.Google Scholar
  5. 1980 WESFREID, E., Étude du comportement asymptotique pour quelques modèles de viscoplasticité, Thèse de 3-ème cycle, Université Pierre et Marie Curie, Paris 6.Google Scholar
  6. 1981 Rydholm, G., On inequalities and shakedown in contact problems, Linköping Studies in Science and Technology, Dissertations No 61, Linköping.Google Scholar
  7. 1985 Johnson, K.L., Contact Mechanics, CUP, Cambridge.Google Scholar
  8. 1985 Telega, J.J., Limit analysis theorems in the case of Signorini's boundary conditions and friction, Arch. Mech., 37, 549.Google Scholar
  9. 1985 Temam, R., Mathematical Problems in Plasticity, Gauthier — Villars, Paris, Trans--Inter-Scientia, Tonbridge.Google Scholar
  10. 1987 Halphen, B., SalenÇOn, J., Élastoplasticité, Presses de 1' École Nationale des Ponts et Chaussées, Paris.Google Scholar
  11. 1987 KÖnig, J.A., Shakedown of Elastic-Plastic Structures, PWN-Elsevier, Warszawa-Amsterdam.Google Scholar
  12. 1987 Telega, J.J., Variational methods in contact problems of mechanics, Uspekhi Mekhaniki (Adv. in Mech.), 10, 3, in Russian.Google Scholar
  13. 1988 BouchittÉ, G., Valadier, M., Integral representation of convex functionals on a space of measures, J. Funct. Analysis, 80, 398.Google Scholar
  14. 1988 Felder, E., Étude; expérimentale de l'anisotropie de frottement de tôles d'acier doux, J. de Méc. théorique et appl., 7, 479.Google Scholar
  15. 1988 Suquet, P.M., Discontinuities and plasticity in: Nonsmooth Mechanics and Applications, éd. by J.J. Moreau and P.D. Panagiotopoulos, Springer — Verlag, Wien — New York, p. 278.Google Scholar
  16. 1988 Telega, J.J., Topics on unilateral contact problems of elasticity and inelasticity, in: Nonsmooth Mechanics and Applications, ed. by J.J. Moreau and P.D. Panagiotopoulos, Springer — Verlag, Wien — New York, p. 341.Google Scholar
  17. 1989 Zmitrowicz, A., On the thermodynamics of contact friction and wear, ZN Instytutu Maszyn Przepływowych PAN, Studia i Materiały, 287/12/89, Gdańsk.Google Scholar
  18. 1990 Kadijk, S.E., BROESSE VAN GROENOU, A, Wear anisotropy of MnZn ferrite. Part I: Recorder and sphere-on-tape experiments, Wear, 139, 93; Part II: Sliding sphere experiments ibid., p. 115; Part III: A wear model, ibid., p. 133.Google Scholar
  19. 1990 Reddy, B.D., Tomarelli, F., The obstacle problem for an elastoplastic body, Appl. Math. Optim., 21, 89.Google Scholar
  20. 1990 Telega, J.J., Variational methods and convex analysis in contact problems and homogenization, IFTR Reports 38/90, Warszawa, in Polish.Google Scholar
  21. 1990 Weichert, D., Advances in the geometrically nonlinear shakedown theory, In: Inelastic Solids and Structures, ed. by M. Kleiber and J.A. König, Pineridge Press, Swansea, p. 489.Google Scholar
  22. 1991 Arikan, R, Murphy, S., Anisotropic wear of planar-random metal matrix composites with zinc alloy matrix, Wear, 143, 149.Google Scholar
  23. 1991 Comi, C., Corigliano, A., Dynamic shakedown in elastoplastic structures with general internal variable constitutive laws, Int. J. Plasticity, 7, 679.Google Scholar
  24. 1991 Nayeb-Hashemi, H., Blucher, J.T., Mirageas, J., Friction and wear behavior of aluminium graphite composites as a function of interface and fiber direction, Wear, 150, 21.Google Scholar
  25. 1992 Johnson, K.L., Shercliff, H.R., Shakedown of 2-dimensional asperities in sliding contact, Int. J. Mech. Sci. 34, 375.Google Scholar
  26. 1992 Nordgren, R.P., Limit analysis of a stochastically inhomogenenous plastic medium with application to plane contact problems, J. Appl. Mech. 59, 477.Google Scholar
  27. 1993 Nayroles, B., Weichert, D., La notion de sanctuaire d' élasticité et d'adaptation des structures, C.R. Acad. Sci. Paris, Série II, 316, 1493.Google Scholar
  28. 1993 Polizzotto, C., On the conditions to prevent plastic shakedown of structures: Part I-Theory, J.Appl. Mech., 60, 15; Part II — The plastic shakedown limit load, ibid., p. 20.Google Scholar
  29. 1994 He, Q.-C, Curnier, A., Anisotropic dry friction between two orthotropic surfaces undergoing large displacements, Eur. J. Mechanics, in print.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Józef Joachim Telega
    • 1
  1. 1.Polish Academy of SciencesInstitute of Fundamental Techological ResearchWarsawPoland

Personalised recommendations