Skip to main content

Metal Ion-Coordinating Properties in Solution of Purine-Nucleoside 5’-Monophosphates and Some Analogues

  • Chapter
Bioinorganic Chemistry

Part of the book series: NATO ASI Series ((ASIC,volume 459))

  • 777 Accesses

Abstract

The stability constants of the 1:1 complexes formed between Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+ and adenosine 5’-monophosphate (AMP2-), inosine 5’-monophosphate (IMP2-), or guanosine 5’- monophosphate (GMP2-) as well as the AMP analogue 9-[2-(phosphonomethoxy)ethyl)]adenine (PMEA2-), which owns antiviral properties, are analyzed with regard to the structures of the complexes formed in solution. Based on log K MM (R-PO3) versus PK HH (R-PO3) straight-line plots, where R-PO 2-3 represents simple phosphate monoester or phosphonate ligands that can only undergo a -PO 2-3 -M2+ coordination, the stabilities of the M(AMP), M(IMP), M(GMP), and M(PMEA) complexes are evaluated. By including tubercidin 5’-monophosphate (= 7-deaza-AMP2-; i.e., N-7 is replaced by a CH unit) into the study it is proven that an increased stability of the M(AMP) complexes is due to macroche- late formation of a phosphate-coordinated metal ion with N-7 of the adenine residue. This macrochelate formation is quantified for the M(AMP), M(IMP), and M(GMP) complexes. Plots of the log stability increases versus the negative log of the micro acidity constants of the H+(N-7) site of the monoprotonated nucleosides reveal that the extent of macrochelate formation is mainly determined by the basicity of N-7. In the case of the M(PMEA) complexes the also observed stability increase has to be attributed to the formation of five-membered chelates involving the ether oxygen present in the -CH2-O-CH2-PO 2-3 residue of PMEA for the complexes with Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Zn2+, and Cd2+; only in the case of Cu2+, and possibly also Ni2+, an interaction with the adenine residue (probably with N-3) occurs in addition. The equilibrium scheme for the three isomers of Cu(PMEA) is elaborated and the formation degree of the various isomers is quantified. Finally, the properties of the M(PMEA) and M(AMP) complexes are compared and it is emphasized that the ether oxygen, which influences so much the stability and structure of the M(PMEA) complexes in solution, is also crucial for the antiviral properties of PMEA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. R. Fraústo da Silva and R. J. P. Williams, The Biological Chemistry of the Elements’, Clarendon Press, Oxford, 1991.

    Google Scholar 

  2. P. D. Boyer, Biochemistry, 1987, 26, 8503.

    Article  CAS  Google Scholar 

  3. F. H. Westheimer, Science, 1987, 235, 1173.

    Article  CAS  Google Scholar 

  4. H. Sigel and A. Sigel, eds., ’Interrelations among Metal Ions, Enzymes, and Gene Expression1, Vol. 25 of Metal Ions in Biological Systems, Dekker, New York & Basel, 1989.

    Google Scholar 

  5. L. G. Marzilli, Prog. Inorg. Chem., 1977, 23, 255.

    Article  CAS  Google Scholar 

  6. H. Sigel, ed., ’Nucleotides and Derivatives: Their Ligating Ambivalencý, Vol. 8 of Metal Ions in Biological Systems, Dekker, New York & Basel, 1979.

    Google Scholar 

  7. H. Sigel, ACS Symp. Ser., 1989, 402, 159.

    Article  CAS  Google Scholar 

  8. B. Lippert, Prog. Inorg. Chem 1989, 37, 1–97.

    Article  CAS  Google Scholar 

  9. B. Lippert, Biometals, 1992, 5, 195.

    Article  CAS  Google Scholar 

  10. H. Sigel, Chem. Soc. Reviews, 1993, 22, 255.

    Article  CAS  Google Scholar 

  11. C. M. Frey and J. Stuehr, Met. Ions Biol. Syst., 1974, 7, 51.

    Google Scholar 

  12. R. B. Martin and Y. H. Mariam, Met. Ions Biol. Syst., 1979, 8, 57.

    CAS  Google Scholar 

  13. R. B. Martin, Met. Ions Biol. Syst., 1988, 23, 315.

    CAS  Google Scholar 

  14. H. Diebler, J. Mol. Catal., 1984, 23, 209.

    Article  CAS  Google Scholar 

  15. H. Sigel, Eur. J. Biochem., 1987, 165, 65.

    Article  CAS  Google Scholar 

  16. H. Sigel, Chimia, 1987, 41, 11.

    CAS  Google Scholar 

  17. A. Szent-Györgyi in ’Enzymes: Units of Biological Structure and Function’’, O. H. Gaebler, ed.; Academic Press, New York, 1956, pp 393–397.

    Google Scholar 

  18. R. Tribolet and H. Sigel, Eur. J. Biochem., 1987, 163, 353.

    Article  CAS  Google Scholar 

  19. H. R. Mahler and E. H, Cordes, ’Biological Chemistry’, Harper and Row, New York, 1966.

    Google Scholar 

  20. A. Bloch, R. J. Leonard, and C. A. Nichol, Biochim. Biophys. Acta, 1967,138, 10.

    Article  CAS  Google Scholar 

  21. T. B. Grage, D. B. Rochlin, A. J. Weiss, and W. L. Wilson, Cancer Res., 1970,30, 79.

    CAS  Google Scholar 

  22. C. G. Smith, L. M. Reineke, M. R. Burch, A. M. Shefner, and E. E. Muirhead, Cancer Res., 1970, 30, 69.

    CAS  Google Scholar 

  23. F. E. Evans and R. H. Sarma, Cancer Res., 1975, 35, 1458.

    CAS  Google Scholar 

  24. A. Holý, E. De Clercq, and I. Votruba, ACS Symp. Series, 1989, 401, 51.

    Article  Google Scholar 

  25. S. A. Foster, J. Černý, and Y.-c. Cheng, J. Biol. Chem., 1991, 266, 238.

    CAS  Google Scholar 

  26. A. Holý, Il Farmaco, 46 (Suppl. 1), 1991, 141.

    Google Scholar 

  27. H. Sigel, D. Chen, N. A. Corfù, F. Gregáň, A. Holý , and M. Strašák, Helv. Chim. Acta, 1992, 75, 2634.

    Article  CAS  Google Scholar 

  28. H. Sigel, S. S. Massoud, and R. Tribolet, J. Am. Chem. Soc., 1988, 110, 6857.

    Article  CAS  Google Scholar 

  29. H. Sigel, S. S. Massoud, and N. A. Corfü, J. Am. Chem. Soc., 1994, 116, 2958.

    Article  CAS  Google Scholar 

  30. H. Sigel, Biol. Trace Elem. Res., 1989, 21, 49.

    Article  CAS  Google Scholar 

  31. N. A. Corfu, R. Tribolet , and H. Sigel, Eur. J. Biochem., 1990, 191, 721.

    Article  CAS  Google Scholar 

  32. N. A. Corfü and H. Sigel, Eur. J. Biochem., 1991, 199, 659.

    Article  Google Scholar 

  33. K. H. Scheller, F. Hofstetter, P. R. Mitchell, B. Prijs, and H. Sigel, J. Am. Chem. Soc., 1981, 103, 247.

    Article  CAS  Google Scholar 

  34. K. H. Scheller and H. Sigel, J. Am. Chem. Soc., 1983, 105, 5891.

    Article  CAS  Google Scholar 

  35. H. Sigel and N. A. Corfü, submitted for publication.

    Google Scholar 

  36. P. W. Schneider, H. Brintzinger, and H. Erlenmeyer, Helv. Chim. Acta, 1964, 47, 992.

    Article  CAS  Google Scholar 

  37. H. Sigel and D. B. McCormick, Acc Chem. Res. 1970, 3, 201.

    Article  CAS  Google Scholar 

  38. H. Sigel, K. Becker, and D. B. McCormick, Biochim. Biophys. Acta, 1967, 148, 655.

    Article  CAS  Google Scholar 

  39. H. Sigel, Experientia, 1966, 22, 497.

    Article  CAS  Google Scholar 

  40. H. Sigel and H. Erlenmeyer, Helv. Chim. Acta, 1966, 49, 1266.

    Article  CAS  Google Scholar 

  41. H. Sigel and K. H. Scheller, Eur. J. Biochem. 1984, 138, 291.

    Article  CAS  Google Scholar 

  42. R. S. Taylor and H. Diebler, Bioinorg. Chem., 1976, 6, 247.

    Article  CAS  Google Scholar 

  43. A. Peguy and H. Diebler,J. Phys. Chem., 1917, 81, 1355.

    Article  Google Scholar 

  44. A. Nagasawa and H. Diebler,J. Phys. Chem., 1981, 85, 3523.

    Article  CAS  Google Scholar 

  45. Y. H. Mariam and R. B. Martin, Inorg. Chim. Acta, 1979, 35, 23.

    Article  CAS  Google Scholar 

  46. M. D. Reily, T. W. Hambley, and L. G. Marzilli, J. Am. Chem. Soc., 1988, 110, 2999.

    Article  CAS  Google Scholar 

  47. L. M. Torres and L. G. Marzilli, J. Am. Chem. Soc., 1991, 113, 4678.

    Article  CAS  Google Scholar 

  48. M. Green and J. M. Miller, J. Chem. Soc., Chem. Commun., 1987, 1864; correction: ibid., 1988, 404.

    Google Scholar 

  49. D. M. Orton and M. J. Green,J. Chem. Soc., Chem. Commun., 1991, 1612.

    Google Scholar 

  50. R. B. Martin and H. Sigel,Comments Inorg. Chem., 1988, 6, 285.

    Article  CAS  Google Scholar 

  51. S. S. Massoud and H. Sigel, Inorg. Chem., 1988, 27, 1447.

    Article  CAS  Google Scholar 

  52. H. Brintzinger, Helv. Chim. Acta, 1965, 48, 47.

    Article  CAS  Google Scholar 

  53. H. Brintzinger and G. G. Hammes, Inorg. Chem., 1966, 5, 1286.

    Article  CAS  Google Scholar 

  54. H. Sigel, N. A. Corfù, L.-n. Ji, and R. B. Martin, Comments Inorg. Chem., 1992, 13, 35.

    Article  CAS  Google Scholar 

  55. R. B. Martin, Acc Chem. Res., 1985, 18, 32.

    Article  CAS  Google Scholar 

  56. Y. Kinjo, R. Tribolet, N. A. Corfù, and H. Sigel, Inorg. Chem., 1989, 28, 1480.

    Article  CAS  Google Scholar 

  57. L.-n. Ji, N. A. Corfu, and H. Sigel,J. Chem. Soc., Dalton Trans., 1991, 1367.

    Google Scholar 

  58. A. M. Fiskin and M. Beer, Biochemistry, 1965, 4, 1289.

    Article  CAS  Google Scholar 

  59. S.-H. Kim and R. B. Martin, see ref 19 and page 42, both in ref 37.

    Google Scholar 

  60. H. Lönnberg and J. Arpalahti, Inorg. Chim. Acta, 1981, 55, 39.

    Article  Google Scholar 

  61. C. A. Lepre and S. J. Lippard in ’Nucleic Acids and Molecular Biology’; F. Eckstein and D. M. J. Lilley, eds.; Springer Verlag, Berlin & Heidelberg, 1990; Vol. 4.

    Google Scholar 

  62. S. J. Lippard, Pure Appl. Chem., 1987, 59, 731.

    Article  CAS  Google Scholar 

  63. J. Reedijk, Inorg. Chim. Acta, 1992, 198–200, 873.

    Google Scholar 

  64. N. A. Frøystein, J. T. Davis, B. R. Reid, and E. Sletten, Acta Chem. Scand., 1993, 47, 649.

    Article  Google Scholar 

  65. Y.-G. Gao, M. Sriram, and A. H.-J. Wang, Nucleic Acids Res., 1993, 21, 4093.

    Article  CAS  Google Scholar 

  66. X. Jia, G. Zon, and L. G. Marzilli, Inorg. Chem., 1991, 30, 228.

    Article  CAS  Google Scholar 

  67. T. Schoenknecht and H. Diebler, J. Inorg. Biochem., 1993, 50, 283.

    Article  CAS  Google Scholar 

  68. D. Chen, F. Gregáň, A. Holý, and H. Sigel, Inorg. Chem., 1993, 32, 5377.

    Article  CAS  Google Scholar 

  69. D. Chen, M. Bastian, F. Gregáň , A. Holý, and H. Sigel, J. Chem. Soc, Dalton Trans., 1993, 1537.

    Google Scholar 

  70. M. Bastian, D. Chen, F. Gregáft, G. Liang, and H. Sigel, Z. Naturforsch., 1993, 48b, 1279.

    Google Scholar 

  71. G. Raudaschl-Sieber, H. Schöllhorn, U. Thewalt, and B. Lippert,J. Am. Chem. Soc., 1985, 107, 3591.

    Article  CAS  Google Scholar 

  72. W. S. Sheldrick, and B. Günther, Inorg. Chim. Acta, 1988,152, 223.

    Article  CAS  Google Scholar 

  73. A. Ciccarese, D. A. Clemente, A. Marzotto, M. Rosa, and G. Valle, J. Inorg. Biochem., 1991, 43, 470.

    Article  Google Scholar 

  74. S. S. Massoud and H. Sigel, Eur. J. Biochem., 1989, 179, 451.

    Article  CAS  Google Scholar 

  75. A. Holý, I. Votruba, A. Merta, J. Černý, J. Veselý, J. Vlach, K. Šedivá, I. Rosenberg, M. Otmar, H. Hiebabecký, M. Trávnítček, V. Vonka, R. Snoeck, and E. De Clercq, Antiviral Res., 1990, 13, 295.

    Article  Google Scholar 

  76. A. Holy, Adv. Antiviral Drug Design, 1993, 1, 179.

    CAS  Google Scholar 

  77. B. Song, A. Holy, and H. Sigel, Gazz. Chim. Italiana, submitted for publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sigel, H. (1995). Metal Ion-Coordinating Properties in Solution of Purine-Nucleoside 5’-Monophosphates and Some Analogues. In: Kessissoglou, D.P. (eds) Bioinorganic Chemistry. NATO ASI Series, vol 459. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0255-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0255-1_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4113-3

  • Online ISBN: 978-94-011-0255-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics