Skip to main content

Mixing Layer Vortices

  • Chapter

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 30))

Abstract

A mixing layer develops between two parallel, but different velocity, streams separated by a splitter plate upstream. The mixing layer is a flow of paramount importance for understanding the development of turbulence in external aerodynamics or combustion, as well as in atmospheric or oceanic flows. These so-called “spatially-growing mixing layers” are characterized by the formation of big spiral vortices resulting from a Kelvin-Helmholtz type instability. The instability is due to the inflectional nature of the upstream velocity profile; the vortex sheet initially created is linearly unstable and rolls up to form the coherent vortices. This roll-up was clearly shown experimentally at both low and high Reynolds numbers (Brown and Roshko 1974; Winant and Browand 1974). For instance, Figure 2.1.1, taken from Brown and Roshko (1974), displays very clearly the presence of these coherent vortices in a mixing layer at a very high Reynolds number. These big spiral vortices, shed in spatially-growing mixing layers, are of major importance for the transport of heat and momentum. (The transfer of momentum is, or course, directly related to the creation of drag). They are also essential in combustion and acoustics, and their manipulation is very important for turbulence control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • André, J. C. and Lesieur, M, 1977 Influence of helicity on high Reynolds number isotropic turbulence. J. Fluid Mech. 81, 187–207.

    Article  ADS  MATH  Google Scholar 

  • Ashurst, W. T. and Meiburg, E. 1988 Three-dimensional shear layers via vortex dynamics. J. Fluid Mech. 189, 87.

    Article  ADS  Google Scholar 

  • Basdevant, C., Legras, B., Sadourny, R. and Beland, B. 1981 A study of barotropic model flows: intermittency, waves and predictability.J. Atmos. Sci. 38 , 2305–2326.

    Article  ADS  Google Scholar 

  • Batchelor, G. K. 1953 The theory of homogeneous turbulence. Cambridge University Press.

    MATH  Google Scholar 

  • Batchelor, G. K., Canuto, C. and Chasnov, J. 1992 J. Fluid Mech. 235, 349–378.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bernal, L. P. and Roshko, A. 1986 Streamwise vortex structure in plane mixing layer. J. Fluid Mech. 170, 499–525.

    Article  ADS  Google Scholar 

  • Bogdanoff, D. W. 1983 AIAA J. 21, 926–927.

    Article  ADS  Google Scholar 

  • Browand, F. K. and Troutt, T. R. 1980 A note on spanwise structure in the two-dimensional mixing layer. J. Fluid Mech. 93, 325–336.

    Google Scholar 

  • Brown, G. L. and Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775–816.

    Article  ADS  Google Scholar 

  • Chandrsuda, C., Mehta, R. D., Weir, A. D. and Bradshaw, P. 1978 Effect of free-stream turbulence on large structure in turbulent mixing layers. J. Fluid Mech. 85, 693–704.

    Article  ADS  Google Scholar 

  • Comte, P. 1989 Ph.D. Thesis. National Polytechnic Institute, Grenoble.

    Google Scholar 

  • Comte, P., Lesieur, M., and Lamballais, E. 1992 Large and small-scale stirring of vorticity and a passive scalar in a 3D temporal mixing layer. Phys. Fluids A 4, 2761–2778.

    Article  ADS  Google Scholar 

  • Corcos, G. M. and Lin, S. J. 1984 The mixing layer: deterministic models of a turbulent flow. Part 2. The origin of the three-dimensional motion. J. Fluid Mech. 139, 67–95.

    Article  ADS  MATH  Google Scholar 

  • Corcos, G. M. and Sherman, F. S. 1984 The mixing layer: deterministic models of a turbulent flow. Part 1: Introduction and the two-dimensional flow. J. Fluid Mech. 139, 29–65.

    Article  ADS  MATH  Google Scholar 

  • David, E. 1994 private communication.

    Google Scholar 

  • Drazin, P. G. and Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.

    MATH  Google Scholar 

  • Fallon, B. 1994 private communication.

    Google Scholar 

  • Farge, M. and Sadourny, R. 1989 Wave-vortex dynamics in rotating shallow water. J. Fluid Mech. 206, 433–462.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Flores, C. 1993 Ph.D. Thesis. National Polytechnic Institute, Grenoble.

    Google Scholar 

  • Fouillet, Y. 1991 PhD National Polytechnic Institute, Grenoble.

    Google Scholar 

  • Fornberg, B. 1977 A numerical study of two-dimensional turbulence. J. Comp. Phys. 25, 1.

    Article  ADS  MATH  Google Scholar 

  • Gamier, E. 1994 Generation of vorticity in baroclinic flows. European Geophysical Society, Grenoble.

    Google Scholar 

  • Gonze, M. A. 1993 Ph.D. Thesis. National Polytechnic Institute, Grenoble.

    Google Scholar 

  • Ho, C. M. and Huerre, P. 1984 Perturbed free shear layers. Ann. Rev. Fluid Mech., 365–424.

    Google Scholar 

  • Huang, L. S. and Ho, C. M. 1990 Small-scale transition in a plane mixing layer. J. Fluid Mech. 210, 475–500.

    Article  ADS  Google Scholar 

  • Kiya, M. 1989 Separation bubbles. Theoretical and Applied Mechanics. (eds. P. Germain et al.) Elsevier, 173–191.

    Google Scholar 

  • Konrad, J. H. 1976 An experimental investigation of mixing in two-dimensional turbulent shear flows with applications to diffusion-limited chemical reactions. Ph.D. Thesis, California Institute of Technology.

    Google Scholar 

  • Kraichnan, R. H. 1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 1521–1536.

    Article  ADS  Google Scholar 

  • Lasheras, J. C. and Choi, H. 1988 Three-dimensional instability of a plane free shear layer: An experimental study of the formation and evolution of streamwise vortices. J. Fluid Mech. 189, 53–86.

    Article  ADS  Google Scholar 

  • Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lesieur, M., Staquet, C., Le Roy, P. and Comte, P. 1988 The mixing layer and its coherence examined from the point of view of two-dimensional turbulence. J. Fluid Mech. 192, 511–534.

    Article  MathSciNet  ADS  Google Scholar 

  • Lesieur, M. 1990 Turbulence in Fluids. Kluwer.

    Google Scholar 

  • Lesieur, M., Yanase, S. and Métais, O. 1991 Stabilizing and destabilizing effects of a solid-body rotation upon quasi two-dimensional shear layers. Phys. Fluids A. 3, 403–407.

    Article  ADS  Google Scholar 

  • Lilly, D. K. 1986 The structure, energetics and propagation of rotating convective storms. Part II: helicity and storm stabilization. J. Atmos. Sci. 43, 126–140.

    Article  ADS  Google Scholar 

  • Lin, S. J. and Corcos, G. M. 1984 The mixing layer: deterministic models of a turbulent flow. Part 3. The effect of plane strain on the dynamics of streamwise vortices. J. Fluid Mech. 141, 139–178.

    Article  ADS  MATH  Google Scholar 

  • Mc Williams, J. 1984 The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 21–43.

    Article  ADS  Google Scholar 

  • Meiburg, E. 1986 Ph.D. Thesis. University of Karlsruhe.

    Google Scholar 

  • Métais, O. and Lesieur, M. 1989 Large-eddy simulation of isotropic and stably-stratified turbulence. Advances in Turbulence 2 (eds. H.H. Fernholz and H.E. Fiedler), Springer-Verlag, 371–376.

    Chapter  Google Scholar 

  • Métais, O. and Lesieur, M. 1992 Spectral large eddy simulations of isotropic and stably-stratified turbulence. J. Fluid Mech. 239, 157–194.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Métais, 0., Flores, C., Yanase, S., Riley, J. and Lesieur, M. 1994 Rotating free shear flows. Part 2: numerical simulations. Submitted to J. Fluid Mech.

    Google Scholar 

  • Metcalfe, R. W., Orszag, S. A., Brachet, M. E., Menon, S. and Riley, J. 1987 Secondary instability of a temporally growing mixing layer. J. Fluid Mech. 184, 207–243.

    Article  ADS  MATH  Google Scholar 

  • Müller, A. and Gyr, A. 1986 On the vortex formation in the mixing layer behind dunes. J. Hydraul. Res. 24, 369–375.

    Article  Google Scholar 

  • Nassef, H. and Browand, F. K. 1993 On the initial formation of a defect structure in a two-dimensional mixing layer, Phys. Fluids A 5, 979–983.

    Article  ADS  Google Scholar 

  • Nygaard, K. J. and Glezer A. 1990 Core instability of the spanwise vortices in a plane mixing layer. Phys. Fluids A 2, 461.

    Article  ADS  Google Scholar 

  • O’Hern, T. J. 1987 Ph.D. Thesis. California Institute of Technology.

    Google Scholar 

  • Orszag, S. 1973 Statistical theory of turbulence. Fluid dynamics, Les Houches (eds. R. Balian and J. L. Peube), Gordon and Breach, 237–374.

    Google Scholar 

  • Papamoschou, D. and Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453–477.

    Article  ADS  Google Scholar 

  • Pierrehumbert, R. T. and Widnall, S. E. 1982 The two- and three-dimensional instabilities of a spatially periodic shear layer. J. Fluid Mech. 114, 59–82.

    Article  ADS  MATH  Google Scholar 

  • Reynolds, 0. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct and sinuous, and the law of resistance in parallel channels. Phil. Trans. Roy. Soc., 51–105.

    Google Scholar 

  • Riley J. J. and Metcalfe, R. W. 1980 Direct-numerical simulation of a perturbed turbulent mixing layer. AIAA paper 80–0274.

    Google Scholar 

  • Rogers, M. and Moser, R. 1992 The three-dimensional evolution of a plane mixing layer: the Kelvin-Helmholtz roll up. J. Fluid Mech. 243, 183–226.

    Article  ADS  MATH  Google Scholar 

  • Sandham, N. D. and Reynolds, W. C. 1991 Three-dimensional simulations of large eddies in the compressible mixing layer. J. Fluid Mech. 224, 133–158.

    Article  ADS  MATH  Google Scholar 

  • Silveira-Neto, A., Grand, D., Métais, O. and Lesieur, M. 1993 A numerical investigation of the coherent vortices in turbulence behind a backward-facing step. J. Fluid Mech. 256, 1–25.

    Article  ADS  MATH  Google Scholar 

  • Silvestrini, J. 1993 Masters Thesis. Grenoble.

    Google Scholar 

  • Silvestrini, J. 1994 Private communication.

    Google Scholar 

  • Staquet, C. 1985 Etude numérique de la transition à la turbulence bidimensionnelle dans une couche de mélange. Ph.D. Thesis, Grenoble.

    Google Scholar 

  • Thorpe, S. A. 1968 A method of producing a shear-flow in a stratified fluid. J. Fluid Mech. 32, 693–704.

    Article  ADS  Google Scholar 

  • Winant, C. D. and Browand, F. K. 1974 Vortex pairing, the mechanism of turbulent mixing layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237–255.

    Article  ADS  Google Scholar 

  • Yanase, S., Flores, C., Métais, O. and Riley, J. J. 1993 Rotating free-shear flows. Part I: linear stability analysis. Phys Fluids A 5, 2725.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lesieur, M.R. (1995). Mixing Layer Vortices. In: Green, S.I. (eds) Fluid Vortices. Fluid Mechanics and Its Applications, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0249-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0249-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4111-9

  • Online ISBN: 978-94-011-0249-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics