Sugar transport across the plasma membranes of higher plants

  • Norbert Sauer
  • Kerstin Baier
  • Manfred Gahrtz
  • Ruth Stadler
  • Jürgen Stolz
  • Elisabeth Truernit


The fluxes of carbohydrates across the plasma membranes of higher-plant cells are catalysed mainly by monosaccharide and disaccharide-H + symporters. cDNAs encoding these different transporters have been cloned recently and the functions and properties of the encoded proteins have been studied extensively in heterologous expression systems. Several of the proteins have been identified biochemically in these expression systems and their location in plants has been shown immunohistochemically or with transgenic plants which were transformed with reporter genes, expressed under the control of the promoters of individual transporter genes. In this paper we summarize the current knowledge on the molecular biology and biochemistry of higher-plant sugar transport proteins.

Key words

apoplastic space glucose transport heterologous expression phloem loading plasma membrane sucrose transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boorer KJ, Forde BG, Leigh RA, Miller AJ: Functional expression of a plant plasma membrane transporter in Xenopus oocytes. FEBS Lett 302: 166–168 (1992).PubMedCrossRefGoogle Scholar
  2. 2.
    Buckhout TJ: Sucrose transport in isolated plasma membrane vesicles from sugar beet. Planta 178: 393–399 (1989).CrossRefGoogle Scholar
  3. 3.
    Bush DR: Proton-coupled sucrose transport in plasmalemma vesicles isolated from sugar beet (Beta vulgaris L. cv. Great Western) leaves. Plant Physiol 89: 1318–1323 (1989).PubMedCrossRefGoogle Scholar
  4. 4.
    Bush DR: Proton-coupled sugar and amino acid transporters in plants. Annu Rev Plant Physiol Plant Mol Biol 44: 513–542 (1993).CrossRefGoogle Scholar
  5. 5.
    Davies A, Meeran K, Cairns MT, Baldwin SA: Peptide specific antibodies as probes of the orientation of the glucose transporter in the human erythrocyte membrane. J Biol Chem 262: 9347–9352 (1987).PubMedGoogle Scholar
  6. 6.
    Delrot S: Loading of photoassimilates. In: Baker DA, Milburn JA (eds) Transport of Photoassimilates, pp. 167–205. Longman Scientific & Technical, New York (1989).Google Scholar
  7. 7.
    DeWitt ND, Harper JF, Sussman MR: Evidence for a plasma membrane proton pump in phloem cells of higher plants. Plant J 1: 121–128 (1991).PubMedCrossRefGoogle Scholar
  8. 8.
    Gahrtz M, Stolz J, Sauer N: A phloem-specific sucrose H + symporter from Plantago major supports the model of apoplastic phloem loading. Plant J 6: 697–706 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    Gamalei YV: Characteristics of phloem loading in woody and herbaceous plants. Fiziol Rastenii 32: 866–875 (1985).Google Scholar
  10. 10.
    Giaquinta WT: Possible role of pH gradient and membrane ATPase in the loading of sucrose into the sieve tubes. Nature 267: 369–370 (1977).CrossRefGoogle Scholar
  11. 11.
    Gogarten JP, Bentrup F-W: The electrogenic proton/hexose carrier in the plasmalemma of Chenopodium rubrum suspension cells: effects of Δc, ΔpH and Δpsi on hexose exchange diffusion. Biochim Biophys Acta 978: 43–50 (1989).CrossRefGoogle Scholar
  12. 12.
    Griffith JK, Baker ME, Rouch DA: Membrane transport proteins: implications of sequence comparisons. Curr Opinions Cell Biol 4: 684–695 (1992).CrossRefGoogle Scholar
  13. 13.
    Komor E: Proton-coupled hexose transport in Chlorella vulgaris. FEBS Lett 38: 16–18 (1973).PubMedCrossRefGoogle Scholar
  14. 14.
    Komor E, Rotter M, Tanner W: A proton-cotransport system in a higher plant: sucrose transport in Ricinus communis. Plant Sci Lett 9: 153–162 (1977).CrossRefGoogle Scholar
  15. 15.
    Lemoine R, Delrot S, Gallet O, Larsson C: The sucrose carrier of the plant plasma membrane: II. Immunological characterization. Biochim Biophys Acta 978: 65–71 (1989).CrossRefGoogle Scholar
  16. 16.
    Madore MA, Webb JA: Leaf free space analysis and vein loading in Cucurbita pepo. Can J Bot 59: 2550–2557 (1981).CrossRefGoogle Scholar
  17. 17.
    Madore MA, Lucas WJ: Transport of photoassimilates between leaf cells. In: Baker DA, Milburn J A (eds) Transport of Photoassimilates, pp. 49–78. Longman Scientific & Technical, New York (1989).Google Scholar
  18. 18.
    Maiden MCJ, Davies EO, Baldwin SA, Moore DCM, Henderson PJE: Mammalian and bacterial sugar transport proteins are homologous. Nature 325: 641–643 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    Marger MD, Saier MH Jr: A major superfamily of transmembrane facilitators that catalyze uniport, symport and antiport. Trends Biochem Sci 18: 13–20 (1993).PubMedCrossRefGoogle Scholar
  20. 20.
    Miller ME, Chourey PS: The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedical and endosperm development. Plant Cell 4: 297–305 (1992).PubMedGoogle Scholar
  21. 21.
    Mueckler M, Caruso C, Baldwin SA, Panico M, Blanch I, Morris HR, Jaffrey W, Lienhard GE, Lodish HF: Sequence and structure of a human glucose transporter. Science 229: 941–945 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    Opekarová M, Caspari T, Tanner W: The HUP1 gene product of Chlorella kessleri: H + /glucose symport studied in vitro. Biochim Biophys Acta.Google Scholar
  23. 23.
    Riesmeier JW, Hirner B, Frommer WB: Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell 5: 1591–1598 (1993).PubMedGoogle Scholar
  24. 24.
    Riesmeier JW, Willmitzer L, Frommer W: Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J 11: 4705–4713 (1992).PubMedGoogle Scholar
  25. 25.
    Riesmeier JW, Willmitzer L, Frommer WB: Evidence for an essential role of sucrose transport in phloem loading and assimilate partitioning. EMBO J 13: 1–7 (1994).PubMedGoogle Scholar
  26. 26.
    Roitsch T, Tanner W: Expression of a sugar-transporter gene family in a photoautotrophic suspension culture of Chenopodium rubrum L. Planta 193: 365–371 (1994).PubMedCrossRefGoogle Scholar
  27. 27.
    Sauer N, Caspari T, Klebl F, Tanner W: Functional expression of the Chlorella hexose transporter in Schizosaccharomyces pombe. Proc Natl Acad Sci USA 87: 7949–7952 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    Sauer N, Friedländer K, Gräml-Wicke U: Primary structure, genomic organization and heterologous expression of a glucose transporter from Arabidopsis thaliana. EMBO J 9: 3045–3050 (1990).PubMedGoogle Scholar
  29. 29.
    Sauer N, Stadler R: A sink-specific H +/monosaccharide co-transporter from Nicotiana tabacum: cloning and heterologous expression in baker’s yeast. Plant J 4: 601–610 (1993).PubMedCrossRefGoogle Scholar
  30. 30.
    Sauer N, Stolz J: SUC1 and SUC2: two sucrose transporters from Arabidopsis thaliana; expression and characterization in baker’s yeast and identification of the histidine-tagged protein. Plant J 6: 67–77 (1994).PubMedCrossRefGoogle Scholar
  31. 31.
    Sauer N, Tanner W: Partial purification and characterization of inducible transport proteins from Chlorella. Z Pflanzenphysiol 114: 367–375 (1984).Google Scholar
  32. 32.
    Sauer N, Tanner W: The hexose carrier from Chlorella. cDNA cloning of a eucaryotic H + cotransporter. FEBS Lett 259: 43–46 (1989).PubMedCrossRefGoogle Scholar
  33. 33.
    Sauer N, Tanner W: Molecular biology of sugar transporters in plants. Bot Acta 106: 277–286 (1993).Google Scholar
  34. 34.
    Schmitz K, Cuypers B, Moll M: Pathway of assimilate transfer between mesophyll cells and minor veins in leaves of Cucumis melo L. Planta 171: 19–29 (1987).CrossRefGoogle Scholar
  35. 35.
    Seckler R, Wright JK, Overath P: Peptide-specific antibody locates the COOH terminus of the lactose carrier of E. coli on the cytoplasmic side of the plasma membrane. J Biol Chem 258: 10817–10820 (1983).PubMedGoogle Scholar
  36. 36.
    Sovonick SA, Geiger DR, Fellows RJ: Evidence for active phloem loading in the minor veins of sugar beet. Plant Physiol 54: 886–891 (1974).PubMedCrossRefGoogle Scholar
  37. 37.
    Stadler R, Wolf K, Hilgarth C, Tanner W, Sauer N: Subcellular localization of the inducible Chlorella HUP1 monosaccharide-H + symporter and cloning of a coinduced galactose-H+ symporter. Plant Physiol, in press (1995).Google Scholar
  38. 38.
    Stolz J, Stadler R, Opekarová M, Sauer N: Functional reconstitution of the solubilized Arabidopsis thaliana STP1 monosaccharide-H + symporter in lipid vesicles and purification of the histidine tagged protein from transgenic Saccharomyces cerevisiae. Plant J 6: 225–233 (1994).PubMedCrossRefGoogle Scholar
  39. 39.
    Tanner W: Light-driven active uptake of 3–O-methylglu-cose via an inducible hexose uptake system of Chlorella. Biochem Biophys Res Commun 36: 278–283 (1969).PubMedCrossRefGoogle Scholar
  40. 40.
    Truernit E, Sauer N: The promoter of the Arabidopsis thaliana SUC2 sucrose-H + symporter gene directs expression of β-glucuronidase to the phloem: evidence for phloem loading and unloading by SUC2. Plant J, in press (1994).Google Scholar
  41. 41.
    Turgeon R: The sink-source transition in leaves. Annu Rev Plant Physiol Plant Mol Biol 40: 119–138 (1989).CrossRefGoogle Scholar
  42. 42.
    Turgeon R, Webb JA: Leaf development and phloem transport in Cucurbita pepo: transition from import to export. Planta 113: 179–191 (1973).CrossRefGoogle Scholar
  43. 43.
    Von Schaewen A, Stitt M, Schmidt R, Sonnewald U, Willmitzer L: Expression of yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J 9: 3033–3044 (1990).Google Scholar
  44. 44.
    Waddell ID, Zomerschoe AG, Voice MW, Burchell A: Cloning and expression of a hepatic microsomal glucose transport protein. Biochem J 286: 173–177 (1992).PubMedGoogle Scholar
  45. 45.
    Weig A, Franz J, Sauer N, Komor E: Isolation of a family of cDNA clones from Ricinus communis L. with close homology to the hexose carriers. J Plant Physiol 143: 178–183 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Norbert Sauer
    • 1
  • Kerstin Baier
    • 1
  • Manfred Gahrtz
    • 1
  • Ruth Stadler
    • 1
  • Jürgen Stolz
    • 1
  • Elisabeth Truernit
    • 1
  1. 1.Lehrstuhl für Zellbiologie und PflanzenphysiologieUniversität RegensburgRegensburgGermany

Personalised recommendations