Transporters for nitrogenous compounds in plants

  • Wolf B. Frommer
  • Marion Kwart
  • Brigitte Hirner
  • Wolf Nicolas Fischer
  • Sabine Hummel
  • Olaf Ninnemann


Cells are surrounded by a membrane which separates intracellular from extracellular processes and allows controlled contact and exchange of the intracellular space with the environment. Communication is made possible by integral membrane proteins at the interface between intra-and extracellular space, thus establishing the contact to neighbouring cells and the surrounding medium. The membrane proteins can function either as signal transducers or as transporters. Transport proteins (permeases) transfer molecules across cell membranes, which can have nutritional or informational value for the cell. By using these transduction pathways, external signals can exert control on biochemical processes inside the cell. As a matter of fact, one molecule can be a nutrient and a regulatory signal at the same time.

Key words

amino acid transport ammonium uptake nitrate uptake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen S, Raven JA: Intracellular pH regulation in Ricinus communis grown with ammonium or nitrate as N source: the role of long distance transport. J Exp Bot 38: 580–596 (1987).Google Scholar
  2. 2.
    Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF: Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89: 3736–3740 (1992).PubMedGoogle Scholar
  3. 3.
    André B, Hein C, Grenson M, Jauniaux JC: Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. Mol Gen Genet 237: 17–25 (1993).PubMedGoogle Scholar
  4. 4.
    Andrews M: The partitioning of nitrate assimilation between the root and shoot of higher plants. Plant Cell Environ 9: 511–519: (1986).Google Scholar
  5. 5.
    Attwell D, Bouvier M: Neurotransmitter transporters: cloners quick on the uptake. Curr Biol 2: 541–543 (1992).PubMedGoogle Scholar
  6. 6.
    Boos W: Bacterial transport. Annu Rev Biochem 43: 123–146 (1974).PubMedGoogle Scholar
  7. 7.
    Borstlap AC: Tobacco mutants of amino acid membrane transport: uptake of L-valine in leaf discs from the double mutant Valr-2 and its monogenic derivatives. In: Lambers H, Neeteson JJ, Stulen I (eds) Fundamental Ecological and Agricultural Aspects of Nitrogen Metabolism in Higher Plants, pp. 115–117. Martinus Nijhoff Publishers, Dordrecht (1986).Google Scholar
  8. 8.
    Borstlap AC, Schuurmans J: Kinetics of L-valine uptake in tobacco leaf discs; comparison of wild type, the digenic mutant Valr-2 and its monogenic derivatives. Planta 176: 42–50 (1988).Google Scholar
  9. 9.
    Borstlap AC, Schuurmanns J, Bourgin JP: Amino acid transport mutant of Nicotiana tabacum. Planta 166: 141–144 (1985).Google Scholar
  10. 10.
    Bourgin JP, Goujaud J, Missionier C, Pethe C: Valine resistance, a potential marker in plant cell genetics. I. Distinction between two types of valine resistant tobacco mutants isolated from protoplast-derived cells. Genetics 109: 393–407 (1985).PubMedGoogle Scholar
  11. 11.
    Bright SWJ, Kueh JSH, Rognes SE: Lysine transport in two barley mutants with altered uptake of basic amino acids. Plant Physiol 72: 821–824 (1983).PubMedGoogle Scholar
  12. 12.
    Bush DR, Langstone-Unkefer PJ: Amino acid transport into membrane vesicles isolated from zucchini. Plant Physiol 88: 487–490 (1988).PubMedGoogle Scholar
  13. 13.
    Bush DR: Proton-coupled sugar and amino acid transporters in plants. Annu Rev Plant Physiol Plant Mol Biol 44: 513–542(1993).Google Scholar
  14. 14.
    Cho BH, Komor E: Mechanism of proline uptake by Chlorella vulgaris. Biochim Biophys Acta 735: 361–366 (1983).Google Scholar
  15. 15.
    Cho BH, Sauer N, Komor E, Tanner W: Glucose induces two amino acid transport systems in Chlorella. Proc Natl Acad Sci USA 78: 3591–3594 (1981).PubMedGoogle Scholar
  16. 16.
    Despeghel JP, Delrot S: Energetics of amino acids uptake by Vicia faba leaf tissue. Plant Physiol 71: 1–6 (1983).PubMedGoogle Scholar
  17. 17.
    de Vries H: Sur la perméabilité du protoplasma des betteraves rouges. Arch Neerl Sci Exactes Nat 6: 118–126 (1871).Google Scholar
  18. 18.
    Doddema H, Telkamp GP: Uptake of nitrate by mutants of Arabidopsis thaliana, disturbed in uptake or reduction of nitrate. Physiol Plant 45: 332–338 (1979).Google Scholar
  19. 19.
    Dubois E, Grenson M: Methylamine/ammonia uptake systems in Saccharomyces cerevisiae: multiplicity and regulation. Mol Gen Genet 175: 67–76 (1979).PubMedGoogle Scholar
  20. 19a.
    Fei Y, Kanai Y, Nussberger S, Ganapathy V, Leibach FH, Romero MF, Singh SK, Boron WF, Hediger MA: Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368: 563–566 (1994).PubMedGoogle Scholar
  21. 20.
    Felle H: Stereo specificity and electrogenicity for amino acid transport in Riccia fluitans. Planta 152: 505–512 (1981).Google Scholar
  22. 21.
    Fernandez DE, Turner FR, Crouch M: In situ localization of storage protein mRNAs in developing meristems of Brassica napus embryos. Development 111: 299–313 (1991).PubMedGoogle Scholar
  23. 21a.
    Fischer WN, Kwart M, Hummel S, Frommer WB: Differential expression of amino acid transporters from Arabidopsis. Mol Gen Genet, submitted.Google Scholar
  24. 22.
    Fisher DB, Magnicol PK: Amino acid composition along the transport pathway during grain filling in wheat. Plant Physiol 82: 1019–1023 (1986).PubMedGoogle Scholar
  25. 23.
    Fried MF, Zsoldos F, Vose PB, Shatokhin IL: Characterizing the NO3 and NH4 + uptake process of rice roots by use of 15N labelled NH4NO3. Physiol Plant 18: 313–320 (1965).Google Scholar
  26. 24.
    Frommer WB, Hummel S, Riesmeier JW: Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proc Natl Acad Sci USA 90: 5944–5948 (1993).PubMedGoogle Scholar
  27. 25.
    Frommer WB, Hirner B, Harms K, Kühn C, Martin T, Riesmeier JW, Schulz B, Willmitzer L: Sugar transport in higher plants. In: Tartakoff A (ed) Membranes: Specialized Functions in Plants. JAI Press, USA, in press (1994).Google Scholar
  28. 25a.
    Frommer WB, Hummel S, Rentsch D: Cloning of an Arabidopsis histidine transporting protein related to nitrate and peptide transporters. FEBS Lett., in press (1994).Google Scholar
  29. 25b.
    Frommer WB, Hummel S, Unseld M, Ninneman O: An amino acid transporter from Arabidopsis with low affinity and broad specificity related to mammalian cationic amino acid transporters. Plant J, submitted (1994).Google Scholar
  30. 26.
    Glass ADM, Shaff JE, Kochian LV: Studies of the uptake of nitrate in barley. Plant Physiol 99: 456–463 (1992).PubMedGoogle Scholar
  31. 27.
    Goyal SS, Huffaker RC: A novel approach and a fully automated microcomputer-based system to study kinetics of NO3−, NO2−, and NH4 + transport stimultaneously by intact wheat seedlings. Plant Cell Environ 9: 209–215 (1986).Google Scholar
  32. 28.
    Grenson M, Hou C, Crabeel M: Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bact 103: 770–777 (1970).PubMedGoogle Scholar
  33. 29.
    Guastella J, Nelson N, Nelson H, Czyzyk C, Keynan S, Miedel MC, Davidson N, Lester HA, Kanner BI: Expression of a rat brain GABA transporter. Science 249: 1303–1306 (1990).PubMedGoogle Scholar
  34. 30.
    Guerche P, Tire C, Grossi de Sa F, De Clercq A, Van Montagu M, Krebbers E: Differential expression of the Arabidopsis 2S albumin genes and the effect of increasing gene family size. Plant Cell 2: 469–478 (1990).PubMedGoogle Scholar
  35. 31.
    Haskovec C, Kotyk A: Attempts at purifying the galactose carrier from galactose-induced baker’s yeast. Eur J Biochem 9: 343–347 (1969).PubMedGoogle Scholar
  36. 32.
    Hayashi H, Chino M: Chemical composition of phloem sap from uppermost internode of the rice plant. Plant Cell Physiol 31: 247–251 (1990).Google Scholar
  37. 33.
    Heatwole VM, Somerville RL: Cloning, nucleotide sequence, and characterization of mtr, the structural gene for a tryptophan-specific permease of Escherichia coli K-12. J Bact 173: 108–115 (1991).PubMedGoogle Scholar
  38. 34.
    Higgins CF, Payne JW: Peptide transport by germinating barley embryos: evidence for a single common carrier for di- and oligopeptides. Planta 138: 217–221 (1978).Google Scholar
  39. 35.
    Higgins CF, Hyde SC, Mimmack MM, Gileadi U, Gill DR, Gallagher MP: Binding protein-dependent transport systems. J Bioenerg Biomembr 22: 571–592 (1990).PubMedGoogle Scholar
  40. 36.
    Higgins TJV: Synthesis and regulation of major proteins in seeds. Annu Rev Plant Physiol 35: 191–221 (1984).Google Scholar
  41. 37.
    Honoré N, Cole ST: Nucleotide sequence of the aroP gene encoding the general aromatic amino acid transport protein of Escherichia coli K-12: homology with yeast transport proteins. Nucl Acids Res 18: 653 (1990).PubMedGoogle Scholar
  42. 38.
    Hoshino T, Kose-Terai K, Uratani Y: Isolation of the braZ gene encoding the carrier for a novel branched-chain amino acid transport system in Pseudomonas aeruginosa PAO. J Bact 173: 1855–1861 (1991).PubMedGoogle Scholar
  43. 39.
    Housley TL, Peterson DM, Schrader LE: Long distance translocation of sucrose, serine, leucine, lysine, and CO2 assimilates. I. Soybean. Plant Physiol 59: 217–220 (1977).PubMedGoogle Scholar
  44. 40.
    Housley TL, Schrader LE, Miller M, Setter TL: Partitioning of 14C-photosynthate, and long distance translocation of amino acids in preflowering and flowering, nodulated and unnodulated soybeans. Plant Physiol 64: 94–98 (1979).PubMedGoogle Scholar
  45. 41.
    Hsu L, Chiou T, Chen L, Bush DR: Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transport mutant. Proc Natl Acad Sci USA 90: 7441–7445 (1993).PubMedGoogle Scholar
  46. 42.
    Jackowski S, Alix JH: Cloning, sequence, and expression of the pantothenate permease (panF) gene of Escherichia coli. J Bact 172: 3842–3848 (1990).PubMedGoogle Scholar
  47. 43.
    Jauniaux JC, Grenson M: GAP1, the general amino acid permease gene of Saccharomyces cerevisiae: nucleotide sequence, protein homology with the other baker’s yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 190: 39–44 (1990).PubMedGoogle Scholar
  48. 44.
    Jauniaux JC, Vandenbol M, Vissers S, Broman K, Grenson M: Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae. Cloning of the PUT4 gene and study of PUT4 RNA levels in wild-type and mutant strains. Eur J Biochem 164: 601–606 (1987).PubMedGoogle Scholar
  49. 45.
    Kanai Y, Hediger MA: Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360: 467–471 (1992).PubMedGoogle Scholar
  50. 46.
    Kim JW, Closs EI, Albritton LM, Cunningham JM: Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352: 725–728 (1991).PubMedGoogle Scholar
  51. 47.
    Kim JW, Cunningham JM: N-linked glycosylation of the receptor for murine ecotropic retroviruses altered in virus-infected cells. J Biol Chem 268: 16316–16320 (1993).PubMedGoogle Scholar
  52. 48.
    Kinraide TB, Etherton B: Electrical evidence for different mechanisms of uptake for basic, neutral, and acidic amino acids in oat coleoptiles. Plant Physiol 65: 1085–1089 (1981).Google Scholar
  53. 49.
    Kleiner D: Transport of NH3 and NH4 + across biological membranes. Biochim Biophys Acta 639: 41–52 (1981).PubMedGoogle Scholar
  54. 50.
    Kleiner D: Bacterial ammonia transport. FEMS Microbiol Rev 32: 87–100 (1985).Google Scholar
  55. 51.
    Kleiner D: NH4 + transport systems. In: Bakker EP (ed) Alkali Cation Transport Systems in Procaryotes, pp. 379–396. CRC Press, London (1993).Google Scholar
  56. 52.
    Komor E, Rotter M, Tanner W: A proton-cotransport system in a higher plant: sucrose transport in Ricinus communis. Plant Sci Lett 9: 153–162 (1977).Google Scholar
  57. 53.
    Komor E, Thom M, Maretzki A: Mechanism of uptake of L-arginine by sugar-cane cells. Eur J Biochem 116: 527–533 (1981).PubMedGoogle Scholar
  58. 54.
    Kong C, Yet S, Lever JE: Cloning and expression of a mammalian Na +/amino acid cotransporter with sequence similarity to Na+ /glucose cotransporters. J Biol Chem 268: 1509–1512 (1993).PubMedGoogle Scholar
  59. 55.
    Koo K, Stuart WD: Sequence and structure of mtr, an amino acid transport gene of Neurospora crassa. Genome 34: 644–651 (1991).PubMedGoogle Scholar
  60. 56.
    Kwart M, Hirner B, Hummel S, Frommer WB: Differential expression of two related amino acid transporters with differing substrate speceficity in Arabidopsis thaliana. Plant J 4: 993–1002 (1993).PubMedGoogle Scholar
  61. 57.
    Langmüller G, Springer-Lederer H: Membranpotential von Chlorella fusca in Abhängigkeit von pH Wert, Temperatur und Belichtung. Planta 120: 189–196 (1974).Google Scholar
  62. 58.
    Larsson CM, Ingemarsson B: Molecular aspects of nitrate uptake in higher plants. In: Wray J, Kinghorn J (eds) Molecular and Genetic Aspects of Nitrate Assimilation, pp. 3–14. Oxford Science Publishers, Oxford (1989).Google Scholar
  63. 59.
    Li Z, Bush DR: ΔpH-dependent amino acid transport into plasma membrane vesicles isolated from sugar beet (Beta vulgaris L.) leaves. Plant Physiol 94: 268–277 (1990).PubMedGoogle Scholar
  64. 60.
    Li Z, Bush DR: ΔpH-dependent amino acid transport into plasma membrane vesicles isolated from sugar beet (Beta vulgaris L.) leaves. Plant Physiol 96: 1338–1344 (1991).PubMedGoogle Scholar
  65. 61.
    Li Z, Bush DR: Structural determinants in substrate recognition by proton-amino acid symports in plasma membrane vesicles isolated from sugar beet leaves. Arch Biochem Biophys 294: 519–526 (1992).PubMedGoogle Scholar
  66. 62.
    Liu Q, Mandiyan S, López-Corcuera, Nelson H, Nelson N: A rat brain cDNA encoding the neurotransmitter transporter with an unusual structure. FEBS Lett 315: 114–118(1993).Google Scholar
  67. 63.
    Ljungdahl PO, Gimeno CJ, Styles CA, Fink GR: SHR3: A novel component of the secretory pathway specifically required for localization of amino acid permeases in yeast. Cell 71: 463–478 (1992).PubMedGoogle Scholar
  68. 64.
    Ludwig RA: Arabidopsis chloroplasts dissimilate L-arginine and L-citrulline for use as N source. Plant Physiol 101: 429–434 (1993).PubMedGoogle Scholar
  69. 65.
    Hennessey EM, Broome-Smith JK: Gene-fusion techniques for determining membrane-protein topology. Curr Opin Struc Biol 3: 524–531 (1993).Google Scholar
  70. 66.
    Marion-Poll A, Missonier C, Goujard J, Caboche M: Isolation and characterization of valine-resistant mutants of Nicotiana plumbaginifolia. Theor Appl Genet 75: 272–277 (1988).Google Scholar
  71. 67.
    Martinoia E: Transport processes in vacuoles of higher plants. Bot Acta 105: 232–245 (1992).Google Scholar
  72. 68.
    McNeil DL: The kinetics of phloem loading of valine in the shoot of a nodulated legume (Lupinus albus L. cv. Ultra). J Exp Bot 118: 1003–1012 (1979).Google Scholar
  73. 69.
    Minet M, Dufour ME, Lacroute F: Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J 2: 417–422 (1992).PubMedGoogle Scholar
  74. 70.
    Nakao T, Yamato I, Anraku Y: Nucleotide sequence of the putP, the proline carrier gene of Escherichia coli K12. Mol Gen Genet 208: 70–75 (1987).PubMedGoogle Scholar
  75. 71.
    Nikawa JI, Hosaka K, Tsukagoshi Y, Yamashita S: Primary structure of the yeast choline transport gene and regulation of its expression. J Biol Chem 265: 15996–16003 (1990).PubMedGoogle Scholar
  76. 72.
    Ninnemann OW, Jauniauex JC, Frommer WB: Identification of a high affinity ammonium transporter from plants. EMBO J 13: 3464–3471 (1994).PubMedGoogle Scholar
  77. 73.
    Niven DF, Hamilton WA: Mechanisms of energy coupling to the transport of amino acids by Staphylococcus aureus. Eur J Biochem 44: 517–522 (1974).PubMedGoogle Scholar
  78. 74.
    Quesada A, Galván A, Schnell RA, Lefebvre PA, Fernández E: Five nitrate assimilation-related loci are clustered in Chlamydomonas reinhardtii. Mol Gen Genet 240: 387–394 (1993).PubMedGoogle Scholar
  79. 75.
    Pajor AM, Wright EM: Cloning and functional expression of a mammalian Na + /nucleoside cotransporter. J Biol Chem 267: 3557–3560 (1992).PubMedGoogle Scholar
  80. 76.
    Pang PP, Pruitt RE, Meyerowitz EM: Molecular cloning, genomic organization, expression and evolution of 12S seed storage protein genes of Arabidopsis thaliana. Plant Mol Biol 11: 805–820 (1988).Google Scholar
  81. 77.
    Pate JS: Transport and partioning of nitrogenous solutes. Annu Rev Plant Physiol 31: 313–340 (1980).Google Scholar
  82. 78.
    Pate JS, Sharkey PJ, Atkins CA: Nutrition of a developing legume fruit. Plant Physiol 59: 506–510 (1977).PubMedGoogle Scholar
  83. 79.
    Payne JW, Hardy DJ: Characterization of the peptide transport system synthesized in germinating barley embryos. In: Dainty J et al. (ed) Plant Membrane Transport, pp. 507–508. Elsevier, Amsterdam (1989).Google Scholar
  84. 80.
    Peña-Cortés H, Liu X, Sanchez Serrano J, Schmid R, Willmitzer L: Factors affecting gene expression of patatin and proteinase-inhibitor II genes families in detached potato leaves. Planta 186: 495–502 (1991).Google Scholar
  85. 81.
    Peoples MB, Gifford RM: Long distance transport of nitrogen and carbon from sources to sinks in higher plants. In: Dennis DT, Turpin DH (eds) Plant Physiology, Biochemistry and Molecular Biology, pp. 442–455. Longman, Essex (1990).Google Scholar
  86. 82.
    Perry JR, Basrai MA, Steiner H, Naider F, Becker JM: Isolation and characterization of a Saccharomyces cerevisiae peptide transport gene. Mol Cell Biol 14: 104–115(1994).Google Scholar
  87. 83.
    Pi J, Wookey PJ, Pittard AJ: Cloning and sequencing of the pheP gene, which encodes the phenylalanine-specific transport system ofEscherichia coli. J Bact 173: 3622–3629 (1991).PubMedGoogle Scholar
  88. 84.
    Pitman MG: Ion transport into the xylem. Annu Rev Plant Physiol 28: 71–88 (1977).Google Scholar
  89. 85.
    Poole RJ: Energy coupling for membrane transport. Annu Rev Plant Physiol 29: 437–460 (1978).Google Scholar
  90. 86.
    Redinbaugh MG, Campbell WH: Higher plant responses to environmental nitrate. Physiol Plant 82: 640–650 (1991).Google Scholar
  91. 87.
    Reinhold L, Kaplan A: Membrane transport of sugars and amino acids. Annu Rev Plant Physiol 35: 45–83 (1984).Google Scholar
  92. 88.
    Rickenberg HV, Cohen GN, Buttin G, Monod J: La galactoside-perméase d’Escherichia coli. Ann Inst Pasteur 91: 829–857 (1956).Google Scholar
  93. 89.
    Riens B, Lohaus G, Heinke D, Heldt HW: Amino acid and sucrose content determined in the cytosolic, chloroplastic and vacular compartment and in the phloem sap of spinach leaves. Plant Physiol 97: 227–233 (1991).PubMedGoogle Scholar
  94. 90.
    Riesmeier JW, Willmitzer L, Frommer WB: Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J 11: 4705–4713 (1992).PubMedGoogle Scholar
  95. 91.
    Riesmeier JW, Hirner B, Frommer WB: Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell 5: 1591–1598 (1993).PubMedGoogle Scholar
  96. 92.
    Riesmeier JW, Willmitzer L, Frommer WB: Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J 13: 1–7 (1994).PubMedGoogle Scholar
  97. 93.
    Roberts CJ, Nothwehr SF, Stevens TH: Membrane protein sorting in the yeast secretory pathway: evidence that the vacuole may be the default compartment. J Cell Biol 119: 69–83 (1992).PubMedGoogle Scholar
  98. 94.
    Robinson SP, Beevers H: Evidence for amino acid proton cotransport in ricinus cotyledon. Planta 152: 527–533 (1981).Google Scholar
  99. 95.
    Rocha-Sosa M, Sonnewald U, Frommer WB, Stratmann M, Willmitzer L: Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J 8: 23–29 (1989).PubMedGoogle Scholar
  100. 96.
    Ronson CW, Astwood PM, Downie JA: Molecular cloning and genetic organization of C4-dicarboxylate transport genes from Rhizobium leguminosarum. J Bact 160: 903–909 (1984).PubMedGoogle Scholar
  101. 97.
    Sauer N: A general amino acid permease is inducible in Chorella vulgaris. Planta 161: 425–431 (1984).Google Scholar
  102. 98.
    Sauer N, Komor E, Tanner W: Regulation and characterization of two inducible amino acid transport systems in Chlorella vulgaris. Planta 159: 404–410 (1983).Google Scholar
  103. 99.
    Sauer N, Tanner W: Selection and characterization of Chlorella mutants deficient in amino acid transport. Plant Physiol 79: 760–764 (1985).PubMedGoogle Scholar
  104. 100.
    Schlee J, Komor E: Ammonium uptake by Chlorella. Planta 168: 232–238 (1986).Google Scholar
  105. 101.
    Schobert C, Komor E: The differential transport of amino acids into the phloem of Ricinus communis L. seedlings as shown by the analysis of sieve-tube sap. Planta 177: 342–349 (1989).Google Scholar
  106. 102.
    Schobert C, Komor E: Transfer of amino acids and nitrate from the roots into the xylem of Ricinus communis seedlings. Planta 181: 85–90 (1990).Google Scholar
  107. 103.
    Scholten HJ, Feenstra WJ: Uptake of chlorate and other ions in seedlings of the nitrate uptake mutant B1 of Arabidopsis thaliana. Physiol Plant 66: 265–269 (1986).Google Scholar
  108. 104.
    Schubert KR, Boland MJ: The ureides. In: The biochemistry of Plants, vol. 16, pp. 197–281. Academic Press, New York (1990).Google Scholar
  109. 105.
    Segel GB, Boal TR, Cardillo TS, Murant FC, Lichtman MA, Sherman F: Isolation of a gene encoding a chaperonin-like protein by complementation of yeast amino acid transport mutants with human cDNA. Proc Natl Acad Sci USA 89: 6060–6064 (1992).PubMedGoogle Scholar
  110. 106.
    Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaynard F, Grignon C: Cloning and expression in yeast of a plant potassium ion transport system. Science 256: 663–665 (1992).PubMedGoogle Scholar
  111. 107.
    Servaites JC, Schrader LE, Jung DM: Energy-dependent loading of amino acids and sucrose into the phloem of soybean. Plant Physiol 64: 546–550 (1979).PubMedGoogle Scholar
  112. 108.
    Shafqat S, Tamarappoo BK, Kilberg MS, Puranam RS, McNamara JO, Guadano-Ferraz A, Fremeau RT Jr: Cloning and expression of novel NO + -dependent neutral amino acid transporter structurally related to mammalian Na + /glutamate cotransporters. J Biol Sci 268: 15351–15355 (1993).Google Scholar
  113. 109.
    Shelp BJ: The composition of phloem exudate and xylem sap from broccoli (Brassica oleracea var. italica) supplied with NH4 +, NO3−. J Exp Bot 38: 1619–1636 (1987).Google Scholar
  114. 110.
    Siddiqi MY, Glass ADM, Ruth TJ, Rufty TW Jr: Studies on nitrate uptake in barley. Plant Physiol 93: 1426–1432 (1990).PubMedGoogle Scholar
  115. 111.
    Simpson RJ: Translocation and metabolism of nitrogen: whole plant aspects. In: Lambers H, Neetson JJ, Stulen I (eds) Fundamental, Ecological and Agricultural Aspects of Nitrogen Metabolism in Higher Plants, pp. 71–96. Martinus Nijhoff, Dordrecht (1986).Google Scholar
  116. 112.
    Sjödahl S, Gustavsson H, Rödin J, Lenman M, Höglund A, Rask L: Cruciferin gene familes are expressed coordinately but with tissue-specific differences during Brassica napus seed development. Plant Mol Biol 23: 1165–1176(1993).Google Scholar
  117. 113.
    Soldal T, Nissen P: Multiphasic uptake of amino acids by barley roots. Physiol Plant 43: 181–188 (1978).Google Scholar
  118. 114.
    Sophianopoulou V, Scazzocchio C: The proline transport protein of Aspergillus nidulans is very similar to amino acid transporters of Saccharomyces cerevisiae. Mol Microbiol 3: 705–714 (1989).PubMedGoogle Scholar
  119. 115.
    Staswick PE: Novel regulation of vegetative storage protein genes. Plant Cell 2: 1–6 (1990).PubMedGoogle Scholar
  120. 116.
    Steffes C, Ellis J, Wu J, Rosen BP: The lysP gene encodes the lysine-specific permease. J Bact 174: 3242–3249 (1992).PubMedGoogle Scholar
  121. 116a.
    Steiner HY, Song W, Zhang L, Naider F, Becker JM, Stacey G: An Arabidopsis peptide transporter is a member of a novel family of membrane transport proteins. Plant Cell, in press (1994).Google Scholar
  122. 117.
    Tanaka J, Fink GR: The histidine permease gene (HIP1) of Saccharomyces cerevisiae. Gene 38: 205–214 (1985).PubMedGoogle Scholar
  123. 118.
    Tanner W: Light-driven uptake of 3-O-methylglucose via an inducible hexose uptake system of Chlorella. Biochem Biophys Res Commun 36: 278–283 (1969).PubMedGoogle Scholar
  124. 119.
    Thorne JH: Phloem unloading of C and N assimilates in developing seeds. Annu Rev Plant Physiol 36: 317–343 (1985).Google Scholar
  125. 120.
    Tsay Y, Schroeder JI, Feldmann KA, Crawford NM: The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72: 705–713 (1993).PubMedGoogle Scholar
  126. 121.
    Udvardi MK, Salom CL, Day DA: Transport of L-glutamate across the bacteroid membrane but not the peribacteroid membrane from soybean root nodules. Mol Plant-Microbe Interact 1: 250–254 (1988).Google Scholar
  127. 122.
    Udvardi MK, Yang LO, Young S, Day DA: Sugar and amino acid transport across symbiotic membranes from soybean nodules. Mol Plant-Microbe Interact 3: 334–340 (1990).Google Scholar
  128. 123.
    Ullrich WR, Larsson M, Larsson CM, Lesch S, Novacky A: Ammonium uptake in Lemna gibba G1, related membrane potential changes, and inhibition of anion uptake. Physiol Plant 61: 369–376 (1984).Google Scholar
  129. 124.
    Unkles SE, Hawker KL, Grieve C, Campbell EI, Montague P, Kinghorn JR: crnA encodes a nitrate transporter in Aspergillus nidulans. Proc Natl Acad Sci USA 88: 204–208 (1991).PubMedGoogle Scholar
  130. 125.
    van Bel AJE, Borstlap AC, van Pinxteren-Bazuine A, Ammerlaan A: Analysis of valine uptake by Commelina mesophyll cells in a biphasic active and a diffusional component. Planta 155: 355–61 (1982).Google Scholar
  131. 126.
    van Bel AJE, Gamalei YV, Ammerlaan A, Bik LPM: Dissimilar phloem loading in leaves with symplastic or apoplastic minor vein configurations. Planta 186: 518–525 (1992).Google Scholar
  132. 127.
    van Bel AJE, Koops AJ, Dueck T: Does light promoted export from Commelina benghalensis leaves result from differential light sensitivity of the cells in the mesophyll to sieve tube path? Physiol Plant 71: 227–234 (1986).Google Scholar
  133. 128.
    van Bel AJE, van Leeuwenkamp P, van der Schoot C: Amino acid uptake by various tissues of the tomato plant. Effects of the external pH and light. Z Pflanzenphysiol Bot 104: 117–128 (1981).Google Scholar
  134. 129.
    van Bel AJE, van der Schoot C: Light-stimulated biphasic amino acid uptake by xylem parenchyma cells. Plant Sci Lett 19: 101–107 (1980).Google Scholar
  135. 130.
    van Bel AJE, van Erven AJ: Potassium co-transport and antiport during the uptake of sucrose and glutamic acid form the xylem vessels. Plant Sci Lett 15: 285–291 (1979).Google Scholar
  136. 131.
    Vandenbol M, Jauniaux JC, Grenson M: Nucleotide sequence of the Saccharomyces cerevisiae PUT4 pro-line-permease-encoding gene: similarities between CAN1, HIP1, and PUT4 permeases. Gene 83: 153–159 (1989).PubMedGoogle Scholar
  137. 132.
    Vandenbol M, Jauniaux JC, Grenson M: The Saccharomyces cerevisiae NPR1 gene required for the activity of ammonia-sensitive amino acid permeases encodes a protein kinase homologue. Mol Gen Genet 222: 393–399 (1990).PubMedGoogle Scholar
  138. 133.
    Wallace B, Yang Y, Hong J, Lum D: cloning and sequencing of a gene encoding a glutamate and aspartate carrier of Escherichia coli K-12. J Bact 172: 3214–3220 (1990).PubMedGoogle Scholar
  139. 134.
    Wang MY, Siddiqi MY, Ruth TJ, Glass ADM: Ammonium uptake by rice roots I. Fluxes and subcellular distribution of 13NH4 +. Plant Physiol 103: 1249–1258 (1993).PubMedGoogle Scholar
  140. 135.
    Wang MY, Siddiqi MY, Ruth TJ, Glass ADM: Ammonium uptake by rice roots. II. Kinetics of 13NH4 + influx across the plasmalemma. Plant Physiol 103: 1259–1267 (1993).PubMedGoogle Scholar
  141. 136.
    Weiner H, Heldt JW: Inter- and intracellular distribution of amino acids and other metabolites in maize (Zea mays L.) leaves. Planta 187: 242–246 (1992).Google Scholar
  142. 137.
    Wells RG, Hediger MA: Cloning of a rat kidney cDNA that stimulates dibasic and neutral amino acid transport and has sequence similarity to glucosidases. Proc Natl Acad Sci USA 89: 5596–5600 (1992).PubMedGoogle Scholar
  143. 138.
    Wiame JM, Grenson M, Arst HN Jr: Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Micr Physiol 26: 1–87 (1985).Google Scholar
  144. 139.
    Williams LE, Nelson SJ, Hall JL: Characterization of solute transport in plasma membrane vesicles isolated from cotyledons of Ricinus communis L. Planta 182: 540–545 (1992).Google Scholar
  145. 140.
    Winter H, Lohaus G, Heldt HW: Phloem transport of amino acids and sucrose in correlation to the corresponding metabolite levels in barley leaves. Plant Physiol 99: 996–1004 (1992).PubMedGoogle Scholar
  146. 141.
    Wu K, Mourad G, King J: A valine resistant mutant of Arabidopsis thaliana displays an acetolactate synthase with altered feedback control. Planta 192: 249–255 (1994).Google Scholar
  147. 142.
    Wyse RE, Komor E: Mechanism of amino acid uptake by sugarcane suspension cells. Plant Physiol 76: 865–870 (1984).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Wolf B. Frommer
    • 1
  • Marion Kwart
    • 1
  • Brigitte Hirner
    • 1
  • Wolf Nicolas Fischer
    • 1
  • Sabine Hummel
    • 1
  • Olaf Ninnemann
    • 1
  1. 1.IGFBerlinGermany

Personalised recommendations