Advertisement

GTP-binding proteins in plants: new members of an old family

Abstract

Regulatory guanine nucleotide-binding proteins (G proteins) have been studied extensively in animal and microbial organisms, and they are divided into the heterotrimeric and the small (monomeric) classes. Heterotrimeric G proteins are known to mediate signal responses in a variety of pathways in animals and simple eukaryotes, whiole small G proteins perform diverse functions including signal transduction, secretion, and regulation of cytoskeleton. In recent years, biochemical analyses have produced a large amount of information on the presence and possible functions of G proteins in plants. Further, molecular cloning has clearly demonstrated that plants have both heterotrimeric and small G proteins. Although the functions of the plant heterotrimeric G proteins are yet to be determined, expression analysis of an Arabidopsis Gα protein suggests that it may be involved in the regulation of cell division and differentiation. In contrast to the very few genes cloned thus far that encode heterotrimeric G proteins in plants, a large number of small G proteins have been identified by molecular cloning from various plants. In addition, several plant small G proteins have been shown to be functional homologues of their counterparts in animals and yeasts. Future studies using a number of approaches are likely to yield insights into the role plant G proteins play.

Key words

guanine nucleotide-binding proteins heterotrimeric G proteins small G proteins biochemical detection cDNAs expression yeast complementation transgenic plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad M, Cashmore AR: HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light receptor. Nature 366: 162–166 (1993).PubMedCrossRefGoogle Scholar
  2. 2.
    Amatruda TT III, Steele DA, Slepak VZ, Simon MI: Gαl6, a G protein α subunit specifically expressed in hematopoietic cells. Proc Natl Acad Sci USA 88: 5587–5591 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    Anai T, Hasegawa K, Watanabe Y, Uchimiya H, Ishizaki R, Matsui M: Isolation and analysis of cDNAs encoding small GTP-binding proteins of Arabidopsis thaliana. Gene 108: 259–264 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    Anuntalabhochai S, Terryn N, Van Montagu M, Inzé D: Molecular characterization of an Arabidopsis thaliana cDNA encoding a small GTP-binding protein, Rhal. Plant J 1: 167–174 (1991).PubMedCrossRefGoogle Scholar
  5. 5.
    Armstrong J, Craighead MW, Watson R, Ponnambalam S, Bowden S: Schizosaccharomyces pombe ypt5: a homologue of the rab5 endosome fusion regulator. Mol Biol Cell 4: 583–592 (1993).PubMedGoogle Scholar
  6. 6.
    Bakalyar HA, Reed RR: Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250: 1403–1406 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    Bennarek SY, Reynolds TL, Schroeder M, Grabowski R, Hengst L, Gallwitz D, Raikhel NV: A small GTP-binding protein from Arabidopsis thaliana functionally complements the yeast ypt6 null mutant. Plant Physiol 104: 591–596 (1994).CrossRefGoogle Scholar
  8. 8.
    Bilushi SV, Shebunin AG, Babakov AV: Purification and subunit composition of a GTP-binding protein from maize root plasma membranes. FEBS Lett 291: 219–221 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    Birnbaumer L: Receptor-to-effector signalling through G proteins: roles for βγ dimers as well as α subunits. Cell 71: 1069–1072(1992).Google Scholar
  10. 10.
    Blum W, Hinsch K-D, Schultz G, Weiler EW: Identification of GTP-binding proteins in the plasma membrane of higher plants. Biochem Biophys Res Commun 156: 954–959 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    Boguski MS, McCormick F: Proteins regulating ras and its relatives. Nature 366: 643–654 (1993).PubMedCrossRefGoogle Scholar
  12. 12.
    Bolwell GP, Coulson V, Rodgers MW, Murphy DL, Jones D: Modulation of the elicitation response in cultured French bean cells and its implication for the mechanism of signal transduction. Phytochemistry 30: 397–405 (1991).CrossRefGoogle Scholar
  13. 13.
    Bossen ME, Kendrick RE, Vredenberg WJ: The involvement of a G-protein in phytochrome-regulated, Ca2+ -dependent swelling of etiolated wheat protoplasts. Physiol Plant 80: 55–62 (1990).CrossRefGoogle Scholar
  14. 14.
    Botstein D, Segev N, Stearns T, Hoyt MA, Holden J, Kahn RA: Diverse biological functions of small GTP-binding proteins in yeast. Cold Spring Harbor Symp Quant Biol 53: 629–636 (1988).PubMedCrossRefGoogle Scholar
  15. 15.
    Bourne HR: Do GTPases direct membrane traffic in secretion? Cell 53: 669–671 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348: 125–132 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127 (1991).PubMedCrossRefGoogle Scholar
  18. 18.
    Brown AM, Birnbaumer L: Ionic channels and their regulation by G protein subunits. Annu Rev Physiol 52: 197–213 (1990).PubMedCrossRefGoogle Scholar
  19. 19.
    Bush J, Cardelli JA: Molecular cloning and DNA sequence of a Dictyostelium cDNA encoding a ran/TC4 related GTP binding protein. GenBank (1993).Google Scholar
  20. 20.
    Buss JE, Munby SM, Casey PJ, Gilman AG, Sefton BM: Myristoylated α subunits of guanine nucleotide-binding regulatory proteins. Proc Natl Acad Sci USA 84: 7493–7497 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    Buss JE, Sefton BM: Direct identification of palmitic acid as the lipid attached to p21 ras. Mol Cell Biol 6: 116–122 (1986).PubMedGoogle Scholar
  22. 22.
    Camps M, Carozzi A, Schnabel P, Scheer A, Parker PJ, Gierschik P: Isozyme-selective stimulation of phospholipase C-β2 by G protein βγ-subunits. Nature 360: 684–686 (1992).PubMedCrossRefGoogle Scholar
  23. 23.
    Capon DJ, Chen EY, Levinson AD, Seeburg PH, Goeddel DV: The complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue. Nature 302: 33–37 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    Chan AM-L, Fleming TP, McGovern ES, Chedid M, Miki T, Aaronson SA: Expression cDNA cloning of a transforming gene encoding the wild-type Gαl2 gene product. Mol Cell Biol 13: 762–768 (1993).PubMedGoogle Scholar
  25. 25.
    Chardin P, Tavitian A: Coding sequences of human ralA and ralB cDNAs. Nucl Acids Res 17: 4380 (1989).PubMedCrossRefGoogle Scholar
  26. 26.
    Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M: Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62: 317–329 (1990).PubMedCrossRefGoogle Scholar
  27. 27.
    Chavrier P, Vingron M, Sander C, Simons K, Zerial M: Molecular cloning of YPT1/sec4-related cDNAs from an epithelial cell line. Mol Cell Biol 10: 6578–6585 (1990).PubMedGoogle Scholar
  28. 28.
    Cheon C-I, Lee N.-G., Siddique A-BM, Bal AK, Verma DPS: Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J 12: 4125–4135 (1993).PubMedGoogle Scholar
  29. 29.
    Clark GB, Memon AR, Tong C-G, Thompson GA Jr, Roux SJ: Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei. Plant J 4: 399–402 (1993).PubMedCrossRefGoogle Scholar
  30. 30.
    Conklin BR, Bourne HR: Structural elements of Gα subunits that interact with Gβγ, receptors, and effectors. Cell 73: 631–641 (1993).PubMedCrossRefGoogle Scholar
  31. 31.
    d’Enfert C, Gensse M, Gaillardin C: Fission yeast and a plant have functional homologues of the Sari and Sec 12 proteins involved in ER to Golgi traffic in budding yeast. EMBO J 11: 4205–4211 (1992).PubMedGoogle Scholar
  32. 32.
    Dallmann G, Sticher L, Marshallsay C, Nagy F: Molecular characterization of tobacco cDNAs encoding two small GTP-binding proteins. Plant Mol Biol 19: 847–857 (1992).PubMedCrossRefGoogle Scholar
  33. 33.
    Dalrymple MA, Peterson-Bjorn S, Friessen JD, Beggs JD: The product of the PRP4 gene of S. cerevisiae shows homology to β subunits of G proteins. Cell 58: 811–812 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    Davies C: Cloning and characterization of a tomato GTPase-like gene related to yeast and Arabidopsis genes involved in vesicular transport. Plant Mol Biol 24: 523–531 (1994).CrossRefGoogle Scholar
  35. 35.
    de Hostos EL, Bradtke B, Lottspeich F, Guggenheim R, Gerish G: Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to g protein β subunits. EMBO J 10: 4097–4104 (1991).PubMedGoogle Scholar
  36. 36.
    de Sousa SM, Hoveland LL, Yarfitz S, Hurley JB: The Drosophila Go alpha-like G protein gene produces multiple transcripts and is expressed in the nervous system and in ovaries. J Biol Chem 264: 18544–18551 (1989).PubMedGoogle Scholar
  37. 37.
    Deng XW, Caspar T, Quail PH: cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Devel 5: 1172–1182 (1991).PubMedCrossRefGoogle Scholar
  38. 38.
    Deng XW, Matsui M, Wei N, Wagner D, Chu AM, Feldmann KA, Quail PH: COP1: an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gβ homologous domain. Cell 71: 791–801 (1992).PubMedCrossRefGoogle Scholar
  39. 39.
    Dietmaier W, Fabry S: Analysis of the introns in genes encoding small G proteins. Curr Genet 26: 497–505 (1994).PubMedCrossRefGoogle Scholar
  40. 40.
    Dietzel C, Kurjan J: The yeast SCG1 gene: a Gα-like protein implicated in the a- and α-factor response pathway. Cell 50: 1001–1010 (1987).PubMedCrossRefGoogle Scholar
  41. 41.
    Dillenschneider M, Hetherington A, Graziana A, Alibert G, Berta P, Haiech J, Ranjeva R: The formation of inositol phosphate derivatives by isolated membranes from Acer psudoplatanus is stimulated by guanine nucleotides. FEBS Lett 208: 413–417 (1986).CrossRefGoogle Scholar
  42. 42.
    Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ: Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem 60: 653–688 (1991).PubMedCrossRefGoogle Scholar
  43. 43.
    Downward J: The ras superfamily of small GTP-binding proteins. Trends Biochem Sci 15: 469–472 (1990).PubMedCrossRefGoogle Scholar
  44. 44.
    Drew JE, Bown D, Gatehouse JA: Sequence of a novel plant ras-related cDNA from Pisum sativum. Plant Mol Biol 21: 1195–1199 (1993).PubMedCrossRefGoogle Scholar
  45. 45.
    Drobak BK, Allan EF, Comerford JG, Roberts R, Dawson AP: Presence of guanine nucleotide-binding proteins in a plant hypoctyl fraction. Biochem Biophys Res Commun 150: 899–903 (1988).PubMedCrossRefGoogle Scholar
  46. 46.
    Ephritikhine G, Pradier J-M, Guern J: Complexity of GTPγS binding to tobacco plasma membranes. Plant Physiol Biochem 31: 573–584 (1993).Google Scholar
  47. 47.
    Fabry S, Jacobsen A, Huber H, Palme K, Schmitt R: Structure, expression, and phylogenetic relationships of a family of ypt genes encoding small G-proteins in the green alga Volvox carteri. Curr Genet 24: 229–240 (1993).PubMedCrossRefGoogle Scholar
  48. 48.
    Fabry S, Na N, Huber H, Palme K, Jaenicke L, Schmitt R: The yptV1 gene encodes a small G-protein in the green alga Volvox carteri: gene structure and properties of the gene product. Gene 118: 153–162 (1992).PubMedCrossRefGoogle Scholar
  49. 49.
    Fairley-Grenot K, Assmann SM: Evidence for G-protein regulation of inward K+ channnel current in guard cells of fava bean. Plant Cell 3: 1037–1044 (1991).PubMedGoogle Scholar
  50. 50.
    Fawell E, Hook S, Sweet D, Armstrong J: Novel YPT1-related genes from Schizosaccharomyces pombe. Nucl Acids Res 18: 4264 (1990).PubMedCrossRefGoogle Scholar
  51. 51.
    Fino SI, Plasterk RH: Characterization of a G-protein α-subunit gene from the nematode Caenorhabditis elegans. J Mol Biol 215: 483–487 (1990).CrossRefGoogle Scholar
  52. 52.
    Firtel RA, van Haastert PJM, Kimmel AR, Devreotes PN: G protein linked signal transduction pathways in development: Dictyostelium as an experimental system. Cell 58: 235–239 (1989).PubMedCrossRefGoogle Scholar
  53. 53.
    Fleming AJ, Mandel T, Roth I, Kuhlemeier C: The patterns of gene expression in tomato shoot apical meristem. Plant Cell 5: 297–309 (1993).PubMedGoogle Scholar
  54. 54.
    Fong HW, Hurley JB, Hopkins RS, Miake-Lye R, Johnson MS, Doolittle RF, Simon MI: Repetitive segmental structure of the transducin β subunit: homology with the CDC4 gene and identification of related mRNAs. Proc Natl Acad Sci USA 83: 2162–2166 (1986).PubMedCrossRefGoogle Scholar
  55. 55.
    Gallwitz D, Donath C, Sander C: A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product. Nature 306: 704–707 (1983).PubMedCrossRefGoogle Scholar
  56. 56.
    Galvin-Parton PA, Watkins DC, Malbon CC: Retinoic acid modulation of transmembrane signalling: analysis in F9 teratocarcinoma cells. J Biol Chem 265: 17771–17779 (1990).PubMedGoogle Scholar
  57. 57.
    Genetics Computer Group I: University Research Park, 575 Science Dr., Suite B, Madison, WI 53711, USA.Google Scholar
  58. 58.
    Gill DM, Woolkalis MJ: Cholera toxin-catalyzed [32P]ADP-ribosylation of proteins. Meth Enzymol 195: 267–280 (1991).PubMedCrossRefGoogle Scholar
  59. 59.
    Gilman AG: G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56: 615–649 (1987).PubMedCrossRefGoogle Scholar
  60. 60.
    Guillemot F, Billault A, Auffray C: Physical linkage of a guanine nucleotide-binding protein-related gene to the chicken major histocompatibility complex. Proc Natl Acad Sci USA 86: 4594–4598 (1989).PubMedCrossRefGoogle Scholar
  61. 61.
    Gupta SK, Gallego C, Johnson GL: Mitogenic pathways regulated by G protein oncogenes. Mol Biol Cell 3: 123–128 (1992).PubMedGoogle Scholar
  62. 62.
    Hadwiger JA, Wilkie TM, Strathmann M, Firtel RA: Identification of Dictyostelium Gαgenes expressed during multicellular development. Proc Natl Acad Sci USA 88: 8213–8217 (1991).PubMedCrossRefGoogle Scholar
  63. 63.
    Hall A: The cellular functions of small GTP-binding proteins. Science 249: 634–640 (1990).CrossRefGoogle Scholar
  64. 64.
    Hall A: Ras-related proteins. Curr Opin Cell Biol 5: 265–268 (1993).PubMedCrossRefGoogle Scholar
  65. 65.
    Hasunuma K, Funadera K: GTP-binding protein(s) in green plant, Lemna paucicostata. Biochem Biophys Res Commun 143: 908–912 (1987).PubMedCrossRefGoogle Scholar
  66. 66.
    Hasunuma K, Furukawa K, Funadera K, Kubota M, Watanabe M: Partial characterization and light-induced regulation of GTP-binding proteins in Lemna paucicostata. Photochem Photobiol 46: 531–535 (1987).CrossRefGoogle Scholar
  67. 67.
    Hasunuma K, Furukawa K, Tomita K, Mukai C, Nakamura T: GTP-binding proteins in etiolated epicotyls of Pisum sativum (Alaska) seedlings. Biochem Biophys Res Commun 148: 133–139 (1987).PubMedCrossRefGoogle Scholar
  68. 68.
    Haubruck H, Engelke U, Mertins P, Gallwitz D: Structural and functional analysis of ypt2, an essential ras-related gene in the fission yeast Schizosaccharomyces pombe encoding a sec4 protein homologue. EMBO J 9: 1957–1962 (1990).PubMedGoogle Scholar
  69. 69.
    Hengst D, Lehmeier T, Gallwitz D: The ryh1 gene in the fission yeast Schizosaccharomyces pombe encoding a GTP-binding protein related to ras, rho and ypt: structure, expression and identification of its human homologue. EMBO J 9: 1949–1955 (1990).PubMedGoogle Scholar
  70. 70.
    Herskowitz I: A regulatory hierarchy for cell specialization in yeast. Nature 342: 749–757 (1990).CrossRefGoogle Scholar
  71. 71.
    Honnor RC, Naghshineh S, Cushman SW, Wolff J, Simpson IA, Londos C: Cholera and pertussis toxins modify regulation of glucose transport activity in rat adipose cell: evidence for mediation of a cAMP-independent process by G-proteins. Cell Signalling 4: 87–98 (1992).PubMedCrossRefGoogle Scholar
  72. 72.
    Huang H, Weiss CA, Ma H: Regulated expression of the Arabidopsis Gα gene GPA1. Int J Plant Sci 155: 3–14 (1994).CrossRefGoogle Scholar
  73. 73.
    Im M-J, Graham RM: A novel guanine nucleotide-binding protein coupled to the α 1-adrenergic receptor. J Biol Chem 265: 18944–18951 (1990).PubMedGoogle Scholar
  74. 74.
    Iñiguez-Lluhi J, Kleuss C, Gilman AG: The importance of G-protein βγ subunits. Trends Cell Biol 3: 230–236 (1993).PubMedCrossRefGoogle Scholar
  75. 75.
    Ishida S, Takahashi Y, Nagata T: Isolation of cDNA of an auxin-regulated gene encoding a G protein β subunit-like protein from tobacco BY-2 cells. Proc Natl Acad Sci USA 90: 11152–11156 (1993).PubMedCrossRefGoogle Scholar
  76. 76.
    Isshiki T, Mochizuki N, Maeda T, Yamamoto M: Characterization of a fission yeast gene, gpa2, that encodes a Gα subunit involved in the monitoring of nutrition. Genes Devel 6: 2455–2462 (1992).PubMedCrossRefGoogle Scholar
  77. 77.
    Jacobs M, Thelen MP, Farndale RW, Astle MC, Rubery PH: Specific guanine nucleotide binding by membranes from Cucurbita pepo seedlings. Biochem Biophys Res Commun 155: 1478–1484 (1988).PubMedCrossRefGoogle Scholar
  78. 78.
    Jelsema CL, Axelrod J: Stimulation of phospholipase A2 activity in bovine rod outer segments by the βγ sub-units of transducin and its inhibition by the α subunit. Proc Natl Acad Sci USA 84: 3623–3627 (1987).PubMedCrossRefGoogle Scholar
  79. 79.
    Jo H, Cha BY, Davis HW, McDonald JM: Identification, partial purification, and characterization of two guanosine triphosphate-binding proteins associated with insulin receptors. Endocrinology 131:2855–2862(1992).Google Scholar
  80. 80.
    Jo H, Radding W, Anantharamaiah GM, McDonald JM: An insulin receptor peptide (1135–1156) stimulates guanosine 5′ -[γ-thio]triphosphate binding to the 67 kDa G protein associated with the insulin receptor. Biochem J 294: 19–24 (1993).PubMedGoogle Scholar
  81. 81.
    Jones DT, Reed RR: Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244: 790–795 (1989).PubMedCrossRefGoogle Scholar
  82. 82.
    Kahn RA, Goddard C, Newkirk M: Chemical and immunological characterization of the 21 kDa ADP-ribosylation factor of adenylate cyclase. J Biol Chem 263: 8282–8287 (1988).PubMedGoogle Scholar
  83. 83.
    Kamada I, Yamauchi S, Toussefian S, Sano H: Transgenic tobacco plants expressing rgp1, a gene encoding a ras-related GTP-binding protein from rice, show distinct morphological characteristics. Plant J 2: 799–807 (1992).CrossRefGoogle Scholar
  84. 84.
    Katz A, Wu D, Simon MI: Subunits βγ of heterotrimeric G protein activate β2 isoform of phospholipase C. Nature 360: 686–689 (1992).PubMedCrossRefGoogle Scholar
  85. 85.
    Kaufman LS: G proteins, paradigms, and plants. Int J Plant Sci 155: 1–2 (1994).CrossRefGoogle Scholar
  86. 86.
    Kaufman LS: GTP-binding signalling proteins in higher plants. J Photochem Photobiol 22: 3–7 (1994).CrossRefGoogle Scholar
  87. 87.
    Kaziro Y, Itoh H, Kozasa T, Nakafuku M, Satoh T: Structure and function of signal-transducing GTP-binding proteins. Annu Rev Biochem 60: 349–400 (1991).PubMedCrossRefGoogle Scholar
  88. 88.
    Kidou S-I, Anai T, Umeda M, Aotsuka S, Tsuge T, Kato A, Uchimiya H: Molecular structure of ras-related small GTP-binding protein genes of rice plants and GTPase activities of gene products in Escherichia coli. FEBS Lett 332: 282–286 (1993).PubMedCrossRefGoogle Scholar
  89. 89.
    Kleuss C, Scherübl H, Hescheler J, Schultz G, Wittig B: Different β-subunits determine G-protein interaction with transmembrane receptors. Nature 358: 424–426 (1992).PubMedCrossRefGoogle Scholar
  90. 90.
    Kleuss C, Scherübl H, Hescheler J, Schultz G, Wittig B: Selectivity in signal transduction determined by γ sub-units of heterotrimeric G proteins. Science 259: 832–834 (1993).PubMedCrossRefGoogle Scholar
  91. 91.
    Korolkov SN, Garnovskaya MN, Basov AS, Chunaev AS, Dumler IL: The detection and characterization of G-proteins in the eyespot of Chlamydomonas reinhardtii. FEBS Lett 270: 132–134 (1990).PubMedCrossRefGoogle Scholar
  92. 92.
    Kumagai A, Pupillo M, Gundersen R, Miake-Lye R, Devreotes PN, Firtel RA: Regulation and function of Gα protein subunits in Dictyostelium. Cell 57: 265–275 (1989).PubMedCrossRefGoogle Scholar
  93. 93.
    Kumar S, Tamura K, Nei M: Molecular Evolutionary Genetics Analysis (version 1.01). Institute for Molecular and Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802, USA.Google Scholar
  94. 94.
    Lam E: Heterotrimeric guanine nucleotide-binding proteins and light responses in higher plants. In: Raskin I, Schultz J (eds) Current Topics in Plant Physiology, vol. 11: Plant Signals in Interactions with Other Organisms, pp. 7–13. American Society for Plant Physiology, Rockville, TN (1993).Google Scholar
  95. 95.
    LaMorte VJ, Harootunian AT, Spiegel AM, Tsien RY, Feramisco JR: Mediation of growth factor induced DNA synthesis and calcium mobilization by Gq and Gi2. J Cell Biol 121: 91–99 (1993).PubMedCrossRefGoogle Scholar
  96. 96.
    Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L: GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340: 692–696 (1989).PubMedCrossRefGoogle Scholar
  97. 97.
    Lee HJ, Tucker EB, Crain RC, Lee Y: Stomatal opening is induced in epidermal peels of Commelina communis L. by GTP analogs or pertussis toxin. Plant Physiol 102: 95–100 (1993).PubMedGoogle Scholar
  98. 98.
    Lefkowitz RJ: The subunit story thickens. Nature 358: 372 (1992).PubMedCrossRefGoogle Scholar
  99. 99.
    Legendre L, Heinstein PF, Low PS: Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. J Biol Chem 267: 20140–20147 (1992).PubMedGoogle Scholar
  100. 100.
    Li W, Assmann S: Characterization of a G-protein-regulated outward K + current in mesophyll cells of Vicia faba L. Proc Natl Acad Sci USA 90: 262–266 (1993).PubMedCrossRefGoogle Scholar
  101. 101.
    Lilly P, Wu L, Welker DL, Devreotes PN: A G-protein β subunit is essential for Dictyostelium development. Genes Devel 7: 986–995 (1993).PubMedCrossRefGoogle Scholar
  102. 102.
    Lochrie MA, Mendel JE, Sternberg PW, Simon MI: Homologous and unique G protein a subunits in the nematode Caenorhabditis elegans. Cell Regul 2: 135–54 (1991).PubMedGoogle Scholar
  103. 103.
    Lochrie MA, Simon MI: G protein multiplicity in eukaryotic signal transduction systems. Biochemistry 27: 4957–4965 (1988).PubMedCrossRefGoogle Scholar
  104. 104.
    Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE: The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325: 321–326 (1987).PubMedCrossRefGoogle Scholar
  105. 105.
    Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh Q-H, Clark OH, Kawasaki E, Bourne HR, McCormick F: Two G protein oncogenes in human endocrine tumors. Science 249: 655–659 (1990).PubMedCrossRefGoogle Scholar
  106. 106.
    Ma H, Yanofsky MF, Huang H: Isolation and sequence analysis of TGA1 cDNAs encoding a tomato G protein α subunit. Gene 107: 189–195 (1991).PubMedCrossRefGoogle Scholar
  107. 107.
    Ma H, Yanofsky MF, Meyerowitz EM: Molecular cloning and characterization of GPA1, a G protein α subunit gene from Arabidopsis thaliana. Proc Natl Acad Sci USA 87: 3821–3825 (1990).PubMedCrossRefGoogle Scholar
  108. 108.
    Markby DW, Onrust R, Bourne HR: Separate GTP binding and GTPase activating domains of a Gα subunit. Science 262: 1895–1901 (1993).PubMedCrossRefGoogle Scholar
  109. 109.
    Marshall MS: The effector interactions of p21ras. Trends Biochem Sci 18: 250–254 (1993).PubMedCrossRefGoogle Scholar
  110. 110.
    Matsui M, Sasamoto S, KuniedaT, Nomura N, Ryotaro I: Cloning of ara, a putative Arabidopsis thaliana gene homologous to the ras-related gene family. Gene 76: 313–319(1989).Google Scholar
  111. 111.
    McLaughlin SK, McKinnon PJ, Margolskee RF: Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357: 563–569 (1992).PubMedCrossRefGoogle Scholar
  112. 112.
    Memon AR, Clark GB, Thompson GA Jr: Identification of an ARF type low molecular mass GTP-binding protein in pea (Pisum sativum). Biochem Biophys Res Comm 193: 809–813 (1993).PubMedCrossRefGoogle Scholar
  113. 113.
    Memon AR, Herrin DL, Thompson GA Jr: Intracellular translocation of a 28 kDa GTP-binding protein during osmotic shock-induced cell volume regulation in Dunaliella salina. Biochim Biophys Acta 1179: 11–22 (1993).PubMedCrossRefGoogle Scholar
  114. 114.
    Milkier PA: Are guanine nucleotide-binding proteins involved in regulation of thylakoid protein kinase activity? FEBS Lett 226: 155–160 (1987).CrossRefGoogle Scholar
  115. 115.
    Miyajima I, Nakafuku M, Nakayama N, Brenner C, Miyajima A, Kaibuchi K, Arai K, Kaziro Y, Matsumoto K: GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction. Cell 50: 1011–1019 (1987).PubMedCrossRefGoogle Scholar
  116. 116.
    Moore MS, Blobel G: The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365: 661–663 (1993).PubMedCrossRefGoogle Scholar
  117. 117.
    Nagano Y, Murai N, Matsuno R, Sasaki Y: Isolation and characterization of cDNAs that encode eleven small GTP-binding protein from Pisum sativum. Plant Cell Physiol 34: 447–455 (1993).PubMedGoogle Scholar
  118. 118.
    Nakafuku M, Itoh H, Nakamura S, Kaziro Y: Occurrence in Saccharomyces cerevisiae of a gene homologous to the cDNA coding for the α subunit of mammalian G proteins. Proc Natl Acad Sci USA 84: 2140–2144 (1987).PubMedCrossRefGoogle Scholar
  119. 119.
    Nakafuku M, Obara T, Kaibuchi K, Miyajima I, Miyajima A, Itoh H, Nakamura S, Arai K-I, Matsumoto K, Kaziro Y: Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible function. Proc Natl Acad Sci USA 85: 1374–1378 (1988).PubMedCrossRefGoogle Scholar
  120. 120.
    Nakano A, Muramatsu M: A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Biol 109: 2677–2691 (1989).PubMedCrossRefGoogle Scholar
  121. 121.
    Neuhaus G, Bowler C, Kern R, Chua N-H: Calcium/calmodulin-dependent and -indepenent phytochrome signal transduction pathways. Cell 73: 937–952 (1993).PubMedCrossRefGoogle Scholar
  122. 122.
    Nishida E, Gotoh Y: The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18: 128–131 (1993).PubMedCrossRefGoogle Scholar
  123. 123.
    Noel JP, Hamm HE, Sigler PB: The 2.2 A crystal structure of transducin-α complexed with GTPγS. Nature 366: 654–663 (1993).PubMedCrossRefGoogle Scholar
  124. 124.
    Obara T, Nakafuku M, Yamamoto M, Kaziro Y: Isolation and characterization of a gene encoding a G-protein α subunit from Schizosaccharomyces pombi: involvement in mating and sporulation pathways. Proc Natl Acad Sci USA 88: 5877–5881 (1991).PubMedCrossRefGoogle Scholar
  125. 125.
    Ohmura T, Sakata A, Onoue K: A 68-kD GTP-binding protein associated with the T cell receptor complex. J Exp Med 176: 887–891 (1992).PubMedCrossRefGoogle Scholar
  126. 126.
    Okamuro JK, den Boer BGW, Jofuku KD: Regulation of Arabidopsis flower development. Plant Cell 5: 1183–1193 (1993).PubMedGoogle Scholar
  127. 127.
    Palme K, Diefenthal T, Moore I: The ypt gene family from maize and Arabidopsis: structural and functional analysis. J Exp Bot 44: 183–195 (1993).Google Scholar
  128. 128.
    Palme K, Diefenthal T, Vingron M, Sander C, Schell J: Molecular cloning and structural analysis of genes from Zea mays (L.) coding for members of the ras-related ypt gene family. Proc Natl Acad Sci USA 89: 787–791 (1992).PubMedCrossRefGoogle Scholar
  129. 129.
    Parks S, Wieschaus E: The Drosophila gastrulation gene concertina encodes a G α-like protein. Cell 64: 447–458 (1991).PubMedCrossRefGoogle Scholar
  130. 130.
    Pfeuffer E, Mollner S, Lancer D, Pfeuffer T: Olfactory adenylyl cyclase: identification and purification of a novel enzyme form. J Biol Chem 264: 18803–18807 (1989).PubMedGoogle Scholar
  131. 131.
    Price SR, Nightingale M, Tsai S-C, Williamson KC, Adamik R, Chen H-CC, Moss J, Vaughan M: Guanine nucleotide-binding proteins that enhance choleragen ADP-ribosyltransferase activity: nulceotide sequence and deduced amino acid sequence of an ADP-ribosylation factor cDNA. Proc Natl Acad Sci USA 85: 5488–5491 (1988).PubMedCrossRefGoogle Scholar
  132. 132.
    Provost NM, Somers DE, Hurley JB: A Drosophila melanogaster G protein a subunit gene is expressed primarily in embryos and pupae. J Biol Chem 263: 12070–12076 (1988).PubMedGoogle Scholar
  133. 133.
    Pupillo M, Kumagai A, Pitt GS, Firtel RA, Devreotes PN: Multiple a subunits of guanine nucleotide-binding proteins in Dictyostelium. Proc Natl Acad Sci USA 86: 4892–4896 (1989).PubMedCrossRefGoogle Scholar
  134. 134.
    Quail PH: Phytochrome: a light-activated moleculer switch that regulates plant gene expression. Annu Rev Genet 25: 389–409 (1991).PubMedCrossRefGoogle Scholar
  135. 135.
    Quan F, Forte MA: Two forms of Drosophila melanogaster Gs α are produced by alternate splicing involving an unusual splice site. Mol Cell Biol 10: 910–917 (1990).PubMedGoogle Scholar
  136. 136.
    Quan F, Thomas L, Forte M: Drosophila stimulatory G protein α subunit activates mammalian adenylyl cyclase but interacts poorly with mammalian receptors: implications for receptor-G protein interaction. Proc Natl Acad Sci USA 88: 1898–1902 (1991).PubMedCrossRefGoogle Scholar
  137. 137.
    Quan F, Wolfgang WJ, Forte MA: The Drosophila gene coding for the α subunit of a stimulatory G protein is preferentially expressed in the nervous system. Proc Natl Acad Sci USA 86: 4321–4325 (1989).PubMedCrossRefGoogle Scholar
  138. 138.
    Regad F, Bardet C, Tremousaygue D, Moisan A, Lescure B, Axelos M: cDNA cloning and expression of an Arabidopsis GTP-binding protein of the ARF family. FEBS Lett 316: 133–136 (1993).PubMedCrossRefGoogle Scholar
  139. 139.
    Reynolds TL, Raikhel NV: Targeting and trafficking of vacuolar proteins. In Tartakoff A (ed) Membranes: Specialized Functions in Plants. JAI Press, Greenwich, CT, in press (1994).Google Scholar
  140. 140.
    Roberge M: Checkpoint controls that couple mitosis to completion of DNA replication. Trends Cell Biol 2: 277–281 (1992).PubMedCrossRefGoogle Scholar
  141. 141.
    Rodríguez-Rosales M, Herrin DL, Thompson GA Jr: Identification of low molecular mass GTP-binding proteins in membranes of the halotolerant alga Dunaliella salina. Plant Physiol 98: 446–451 (1992).PubMedCrossRefGoogle Scholar
  142. 142.
    Romero LC, Lam E: Guanine nucleotide binding protein involvement in early steps of phytochrome-regulated gene expression. Proc Natl Acad Sci USA 90: 1465–1469 (1993).PubMedCrossRefGoogle Scholar
  143. 143.
    Romero LC, Sommer D, Gotor C, Song P-S: G-protein in etiolated Avena seedlings: possible phytochrome regulation. FEBS Lett 282: 341–346 (1991).PubMedCrossRefGoogle Scholar
  144. 144.
    Ross EM: Signal sorting and amplification through G protein-coupled receptors. Neuron 3: 141–152 (1989).PubMedCrossRefGoogle Scholar
  145. 145.
    Rubin GM: Signal transduction and the fate of the R7 photoreceptor in Drosophila. Trends Genet 7: 372–377 (1991).PubMedGoogle Scholar
  146. 146.
    Ryba NJP, Pottinger JDD, Keen JN, Findlay JBC: Sequence of the β-subunit of the phosphatidylinositol-specific phospholipase C-directed GTP-binding protein from squid (Loligo forbesi) photoreceptors. Biochem J 273: 225–228 (1991).PubMedGoogle Scholar
  147. 147.
    Sano H, Youssefian S: A novel ras-related rgp1 gene encoding a GTP-binding protein has reduced expression in 5-azacytidine induced dwarf rice. Mol Gen Genet 228: 227–232 (1991).PubMedCrossRefGoogle Scholar
  148. 148.
    Sasaki Y, Sekiguchi K, Nagano Y, Matsuno R: Detection of small GTP-binding proteins in the outer envelop membrane of pea chloroplasts. FEBS Lett 293: 124–126 (1991).PubMedCrossRefGoogle Scholar
  149. 149.
    Schlessinger J: How receptor tyrosine kinases activate Ras. Trends Biochem Sci 18: 273–275 (1993).PubMedCrossRefGoogle Scholar
  150. 150.
    Schloss JA: A chlamydomonas gene encodes a G protein β subunit-like polypeptide. Mol Gen Genet 221: 443–452 (1990).PubMedCrossRefGoogle Scholar
  151. 151.
    Schultz DG, Carlson M: Molecular analysis of SSN6, a gene functionally related to the SNF1 protein kinase of Saccharomyces cerevisiae. Mol Cell Biol 7: 3637–3645 (1987).PubMedGoogle Scholar
  152. 152.
    Schwaninger R, Plutner H, Bokoch GM, Balch WE: Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes. J Cell Biol 119: 1077–1096 (1992).PubMedCrossRefGoogle Scholar
  153. 153.
    Seuwen K, Pouysségur J: G protein-controlled signal transduction pathways and the regulation of cell proliferation. Adv Cancer Res 58: 75–94 (1992).PubMedCrossRefGoogle Scholar
  154. 154.
    Sharrock RA, Quail PH: Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Devel 3: 1745–1757 (1989).PubMedCrossRefGoogle Scholar
  155. 155.
    Simon MI, Strathmann MP, Gautam N: Diversity of G proteins in signal transduction. Science 252: 802–808 (1991).PubMedCrossRefGoogle Scholar
  156. 156.
    Srivastava SK, Singh US: Insulin activates guanosine 5′-[γ-thio] triphosphate (GTPγS) binding to a novel GTP-binding protein, GIR, from human placenta. Biochem Biophys Res Comm 173: 501–506 (1990).PubMedCrossRefGoogle Scholar
  157. 157.
    Sternberg PW, Horvitz HR: Signal transduction during C. elegans vulval induction. Trends Genet 7: 366–371 (1991).PubMedGoogle Scholar
  158. 158.
    Strathmann M, Simon MI: G protein diversity: a distinct class of α subunits is present in vertebrates and invertebrates. Proc Natl Acad Sci USA 87: 9113–9117 (1990).PubMedCrossRefGoogle Scholar
  159. 159.
    Strathmann MP, Simon MI: Gα12 and Gα13 subunits define a fourth class of G protein α subunits. Proc Natl Acad Sci USA 88: 5582–5586 (1991).PubMedCrossRefGoogle Scholar
  160. 160.
    Stryer L: Cyclic GMP cascade of vision. Annu Rev Neurosci 9: 87–119 (1986).PubMedCrossRefGoogle Scholar
  161. 161.
    Terryn N, Anuntalabhochai S, Van Montagu M, Inzé D: Analysis of a Nicotiana plumbaginifolia cDNA encoding a novel small GTP-binding protein. FEBS Lett 299: 287–290 (1992).PubMedCrossRefGoogle Scholar
  162. 162.
    Terryn N, Arias MB, Engler G, Tiré C, Villarroel R, Van Montagu M, Inzé D: rhal, a gene encoding a small GTP binding protein from Arabidopsis, is expressed primarily in developing guard cells. Plant Cell 5: 1761–1769 (1993).PubMedGoogle Scholar
  163. 163.
    Terryn N, Van Montagu M, Inzé D: GTP-binding proteins in plants. Plant Mol Biol 22: 143–152 (1993).PubMedCrossRefGoogle Scholar
  164. 164.
    Ullrich A, Schlessinger J: Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212 (1990).PubMedCrossRefGoogle Scholar
  165. 165.
    van der Voorn L, Gebbink M, Plasterk RH, Ploegh HL: Characterization of a G-protein β-subunit gene from the nematode Caenorhabditis elegans. J Mol Biol 213: 17–26 (1990).PubMedCrossRefGoogle Scholar
  166. 166.
    Walworth NC, Goud B, Kabcenell AK, Novick PJ: Mutational analysis of SEC4 suggests a cyclical mechanism for the regulation of vesicular traffic. EMBO J 8: 1685–1693 (1989).PubMedGoogle Scholar
  167. 167.
    Wang H, Watkins DC, Malbon CC: Antisense oligodeoxynucleotides to Gs protein α-subunit sequence accelerate differentiation of fibroblasts to adipocytes. Nature 358: 334–337 (1992).PubMedCrossRefGoogle Scholar
  168. 168.
    Wang M, Sedee NJA, Heidekamp F, Snaar-Jagalska BE: Detection of GTP-binding proteins in barley aleurone protoplasts. FEBS Lett 329: 245–248 (1993).PubMedCrossRefGoogle Scholar
  169. 169.
    Warpeha KMF, Hamm HE, Rasenick MM, Kaufman LS: A blue-light-activated GTP-binding protein in the plasma membranes of etiolated peas. Proc Natl Acad Sci USA 88: 8925–8929 (1991).PubMedCrossRefGoogle Scholar
  170. 170.
    Watkins DC, Johnson GL, Malbon CC: Regulation of the differentiation of teratocarcinoma cell into primitive endoderm by Gα i2. Science 258: 1373–1375 (1992).PubMedCrossRefGoogle Scholar
  171. 171.
    Weiss CA, Garnaat CW, Mukai K, Hu Y, Ma H: Isolation of cDNAs encoding G protein β subunit homologues from maize (ZGB1) and Arabidopsis (AGB1). Proc Natl Acad Sci USA 91: 9554–9558 (1994).PubMedCrossRefGoogle Scholar
  172. 172.
    Weiss CA, Huang H, Ma H: Immunolocalization of the G protein α subunit encoded by the GPA1 gene in Arabidopsis. Plant Cell 5: 1513–1528 (1993).PubMedGoogle Scholar
  173. 173.
    White IR, Wise A, Finan PM, Clarkson J, Milkier PA: GTP-binding proteins in higher plant cells. In: Cooke DT, Clarkson DT (eds) Transport and Receptor Proteins of Plant Membranes, pp. 185–192. Plenum Press, New York (1992).CrossRefGoogle Scholar
  174. 174.
    Whiteway M, Hougan L, Dignard D, Thomas DY, Bell L, Saari GC, Grant FJ, O’Hara P, Mackay VL: The STE4 and STE18 genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein. Cell 56: 467–477 (1989).PubMedCrossRefGoogle Scholar
  175. 175.
    Whiteway M, Hougan L, Thomas DY: Overexpression of the STE4 gene leads to mating response in haploid Saccharomyces cerevisiae. Mol Cell Biol 10: 217–222 (1990).PubMedGoogle Scholar
  176. 176.
    Wichmann H, Hengst L, Gallwitz D: Endocytosis in yeast: evidence for the involvement of a small GTP-binding protein (Ypt7p). Cell 71: 1131–1142 (1992).PubMedCrossRefGoogle Scholar
  177. 177.
    Wigler M, Field J, Powers S, Broek D, Toda T, Cameron S, Nikawa J, Michaeli T, Colicelli J, Ferguson K: Studies of RAS function in the yeast Saccharomyces cerevisiae. Cold Spring Harbor Symp Quant Biol 53: 649–655 (1988).PubMedCrossRefGoogle Scholar
  178. 178.
    Wigler MH: The RAS system in yeasts. In: Lacal JC, McCormick F (eds) The ras Superfamily of GTPases, pp. 155–172. CRC Press, Boca Raton, FL (1993).Google Scholar
  179. 179.
    Wilkie TM, Scherle PA, Strathmann MP, Slepak VZ, Simon MI: Characterization of G-protein α subunits in the Gq class: expression in murine tissues and stromal and hematopoietic cell lines. Proc Natl Acad Sci USA 88: 10049–10053 (1991).PubMedCrossRefGoogle Scholar
  180. 180.
    Williams FE, Trumbly RJ: Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae. Mol Cell Biol 10: 6500–6511 (1990).PubMedGoogle Scholar
  181. 181.
    Williams FE, Varanasi U, Trumbly RJ: The CYC8 and TUP1 proteins involved in glucose repression in Saccharomyces cerevisiae are associated in a protein complex. Mol Cell Biol 11: 3307–3316 (1991).PubMedGoogle Scholar
  182. 182.
    Wu LJ, Devreotes PN: Dictyostelium transiently expresses eight distinct G-protein α -subunits during its developmental program. Biochem Biophys Res Commun 179: 1141–1147 (1991).PubMedCrossRefGoogle Scholar
  183. 183.
    Yang Z, Watson JC: Molecular cloning and characterization of rho, a ras-related small GTP-binding protein from the garden pea. Proc Natl Acad Sci USA 90: 8732–8736 (1993).PubMedCrossRefGoogle Scholar
  184. 184.
    Yarfitz S, Niemi GA, McConnell JL, Fitch CL, Hurley JB: A G β protein in the Drosophila compound eye is different from that in the brain. Neuron 7: 429–438 (1991).PubMedCrossRefGoogle Scholar
  185. 185.
    Yarfitz S, Provost NM, Hurley JB: Cloning of a Drosophila melanogaster guanine nucleotide regulatory protein β-subunit gene and characterization of its expression during development. Proc Natl Acad Sci USA 85: 7134–7138 (1988).PubMedCrossRefGoogle Scholar
  186. 186.
    Yi Y, Guerinot M: A new member of the small GTP-binding protein family in Arabidopsis thaliana. Plant Physiol 104: 295–296 (1994).PubMedCrossRefGoogle Scholar
  187. 187.
    Youssefian S, Nakamura M, Sano H: Molecular characterization of rgp2, a gene encoding a small GTP-binding protein from rice. Mol Gen Genet 237: 187–192 (1993).PubMedCrossRefGoogle Scholar
  188. 188.
    Zahraoui A, Touchot N, Chardin P, Tavitian A: The human rab genes encode a family of GTP-binding proteins related to yeast ypt1 and sec4 products involved in secretion. J Biol Chem 264: 12394–12401 (1989).PubMedGoogle Scholar
  189. 189.
    Zaina S, Breviario D, Mapelli S, Bertani A, Reggiani R: Two putative G-protein α subunits dissociate from rice coleoptile membranes after GTP stimulation. J Plant Physiol 143: 293–297 (1994).CrossRefGoogle Scholar
  190. 190...
    Zaina S, Reggiani R, Bertani A: Preliminary evidence for involvement of GTP-binding protein(s) in auxin signal transduction in rice (Oryza sativa L.). J Plant Physiol 136: 653–658 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Hong Ma
    • 1
  1. 1.Cold Spring Harbor LaboratoryCold Spring HarborUSA

Personalised recommendations