Signal transduction in the sexual life of Chlamydomonas

  • Lynne M. Quarmby


Several signal transduction pathways play important roles in the sexual life cycle of Chlamydomonas. Nitrogen deprivation, perhaps sensed as a drop in intracellular [NH4+], triggers a signal transduction pathway that results in altered gene expression and the induction of the gametogenic pathway. Blue light triggers a second signalling cascade which also culminates in gene induction and completion of gametogenesis. New screens have uncovered several mutants in these pathways, but so far we know little about the biochemical events that transduce the environmental signals of nitrogen deprivation and blue light into the changes in gene transcription that produce gametes.

Cell-cell contact of mature, complementary gametes elicits a number of responses that prepare the cells for fusion. Contact is sensed by the agglutinin-mediated cross-linking of flagellar membrane proteins. An increase in [cAMP] couples protein cross-linking to the mating responses. In C. reinhardtii the cAMP signal appears to be generated by the sequential stimulation of as many as 3 distinct adenylyl cyclase activities. Although the molecular mechanisms of adenylyl cyclase activations are poorly understood, Ca2+ may play a role. Most of the mating responses appear to be triggered by a cAMP-dependent protein kinase, but here too, Ca2+ may play a role. Numerous mutants are facilitating studies of the signalling pathways that trigger the mating responses.

Cell fusion triggers another series of events that culminate in the expression of zygote specific genes. The mature zygote is sensitive to a light signal which stimulates the expression of genes whose products are essential for germination. The signal transduction pathways that trigger zygospore formation and germination are ripe for investigation in this experimentally powerful system.

Key words

Chlamydomonas calcium cAMP adenylyl cyclase gametogenesis mating response 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adair WS, Snell WJ: Organization and in vitro assembly of the Chlamydomonas reinhardtii cell wall. In: Varner JE (ed) Self Assembling Architecture, pp. 25–41. A.R. Liss, New York (1990).Google Scholar
  2. 2.
    Adair W, Monk B, Cohen R, Wang C, Goodenough U: Sexual agglutinins from the Chlamydomonas flagellar membrane. J Biol Chem 257: 4593–4602 (1982).PubMedGoogle Scholar
  3. 3.
    Ahmad M, Cashmore AR: HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366: 162–166 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    Armbrust EV, Ferris PJ, Goodenough UW: A mating type-linked gene cluster expressed in Chlamydomonas zygotes participates in the uniparental inheritance of the chloroplast genome. Cell 74: 801–811 (1993).PubMedCrossRefGoogle Scholar
  5. 5.
    Beck CF, Acker A: Gametic differentiation of Chlamydomonas reinhardtii. Plant Physiol 98: 822–826 (1991).CrossRefGoogle Scholar
  6. 6.
    Berridge MJ: Inositol trisphosphate and calcium signalling. Nature 361: 315–325 (1993).PubMedCrossRefGoogle Scholar
  7. 7.
    Bloodgood RA: Directed movement of ciliary and flagellar membrane components: a review. J Biochem Cell Biol 63: 608–620 (1992).Google Scholar
  8. 8.
    Bloodgood RA, Levin EN: Transient increase in calcium efflux accompanies fertilization in Chlamydomonas. J Cell Biol 97: 397–404 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    Buerkle S, Gloeckner G, Beck C: Chlamydomonas mutants affected in the light-dependent step of sexual differentiation. Proc Natl Acad Sci USA 90: 6981–6985 (1993).PubMedCrossRefGoogle Scholar
  10. 10.
    Bulte L, Bennoun P: Translational accuracy and sexual differentiation in Chlamydomonas reinhardtii. Curr Genet 18: 155–160 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    Campbell AM, Rayala HJ, Goodenough UW: Mating-type minus gametic mutant iso-1 converts Chlamydomonas reinhardtii from heterothallism to incomplete homothallism. Mol Biol Cell 4: 147a (1993).Google Scholar
  12. 12.
    Deng XW: Fresh view of light signal transduction in plants. Cell 76: 423–426 (1994).PubMedCrossRefGoogle Scholar
  13. 13.
    Detmers PA, Condeelis J: Trifluoperazine and W-7 inhibit mating in Chlamydomonas at an early stage of gametic interaction. Exp Cell Res 163: 317–326 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    Detmers PA, Goodenough UW, Condeelis J: Elongation of the fertilization tubule in Chlamydomonas: new observations on the core microfilaments and the effect of transient intracellular signals on their structural integrity. J Cell Biol 97: 522–532 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    Ebersold WT, Levine RP, Levine EE, Olmsted A: Linkage maps in Chlamydomonas reinhardii. Genetics 47: 531–543 (1962).PubMedGoogle Scholar
  16. 16.
    Ellisman MH, Deerinck TJ, Ouyang Y, Beck CF, Tanksley SJ, Walton PD, Airey JA, Sutko JL: Identification and localization of ryanodine binding proteins in the avian central nervous system. Neuron 5: 135–146 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    Ferris PJ, Goodenough UW: Transcription of novel genes, including a gene linked to the mating-type locus, induced by Chlamydomonas fertilization. Mol Cell Biol 7: 2360–2366 (1987).PubMedGoogle Scholar
  18. 18.
    Forest CL: Specific contact between mating structure membranes observed in conditional fusion-defective Chlamydomonas mutants. Exp Cell Res 148: 143–154 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    Forest CL, Togasaki RK: Proc Natl Acad Sci USA 72: 3652–3655 (1975).PubMedCrossRefGoogle Scholar
  20. 20.
    Galione A: Ca2+-induced Ca2+ release and its modulation by cyclic ADP-ribose. Trends Pharmacol Sci 13: 304–306 (1992).PubMedCrossRefGoogle Scholar
  21. 21.
    Galione A, Lee HC, Busa WB: Ca2+ induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 253: 1143–1146 (1991).PubMedCrossRefGoogle Scholar
  22. 22.
    Gillham NW, Boynton JE, Harris EH: Transmission of plastid genes. In: Bogorad L, Vasil IK (eds) Cell Culture and Somatic Cell Genetics, vol. 7A, pp. 55–92. Academic Press, New York (1991).Google Scholar
  23. 23.
    Gitelman SE, Witman GB: Purification of calmodulin from Chlamydomonas: calmodulin occurs in cell bodies and flagella. J Cell Biol 87: 764–770 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    Goodenough UW: Cyclic AMP enhances the sexual agglutinability of Chlamydomonas flagella. J Cell Biol 109: 247–252 (1989).PubMedCrossRefGoogle Scholar
  25. 25.
    Goodenough UW: Chlamydomonas mating interactions. Microbial Cell-Cell Interactions: 71–111 (1991).Google Scholar
  26. 26.
    Goodenough U: Tipping flagellar agglutinins by gametes on Chlamydomonas reinhardtii. Cell Motility Cyto skeleton 25: 179–189 (1993).CrossRefGoogle Scholar
  27. 27.
    Goodenough UW: Development in Chlamydomonas and related organisms. Annu Rev Plant Physiol Plant Mol Biol, in press (1994).Google Scholar
  28. 28.
    Goodenough UW, Jurivich D: Tipping and mating-structure activation induced in Chlamydomonas gametes by flagellar membrane antisera. J Cell Biol 79: 680–693 (1978).PubMedCrossRefGoogle Scholar
  29. 29.
    Goodenough UW, Hwang C, Martin H: Isolation and genetic analysis of mutant strains of Chlamydomonas reinhardi defective in gametic differentiation. Genetics 82: 169–186 (1976).PubMedGoogle Scholar
  30. 30.
    Goodenough UW, Hwang C, Warren J: Sex-limited expression of gene loci controlling flagellar membrane agglutination in the Chlamydomonas mating reaction. Genetics 89: 235–243 (1978).PubMedGoogle Scholar
  31. 31.
    Goodenough UW, Detmers PA, Hwang C: Activation for cell fusion in Chlamydomonas. Analysis of wild-type gametes and non-fusing mutants. J Cell Biol 92: 378–386 (1982).PubMedCrossRefGoogle Scholar
  32. 32.
    Goodenough UW, Adair WS, Collin-Osdoby P, Heuser JE: Structure of the Chlamydomonas agglutinin and related flagellar surface proteins in vitro and in situ. J Cell Biol 101: 924–941 (1985).PubMedCrossRefGoogle Scholar
  33. 33.
    Goodenough UW, Shames B, Small L, Saito T, Crain RC, Sanders MA, Salisbury JL: The role of calcium in the Chlamydomonas reinhardtii mating reaction. J Cell Biol 121: 365–374 (1993).PubMedCrossRefGoogle Scholar
  34. 34.
    Hall LM, Taylor KB, Jones DD: Expression of a foreign gene in Chlamydomonas reinhardtii. Gene 124: 75–81 (1993).PubMedCrossRefGoogle Scholar
  35. 35.
    Harris EH: The Chlamydomonas Sourcebook, 1st ed., vol. 1. Academic Press, Berkeley (1989).Google Scholar
  36. 36.
    Hartzeil LB, Hartzeil HC, Quarmby LM: Mechanisms of flagellar excision. I. The role of intracellular acidification. Exp Cell Res 208: 148–153 (1993).CrossRefGoogle Scholar
  37. 37.
    Harz H, Nonnengasser C, Hegemann P: The photoreceptor current of the green alga Chlamydomonas. Phil Trans R Soc Lond B 338: 39–52 (1992).CrossRefGoogle Scholar
  38. 38.
    Huang B, Mengersen A, Lee VD: Molecular cloning of cDNA for caltractin, a basal body-associated calcium-binding protein: homology in its protein sequence with calmodulin and the yeast cdc-31 gene product. J Cell Biol 197: 133–140 (1988).CrossRefGoogle Scholar
  39. 39.
    Hunnicutt G, Snell WJ: Rapid and slow mechanisms for loss of cell adhesiveness during fertilization in Chlamydomonas. Devel Biol 147: 216–224 (1991).CrossRefGoogle Scholar
  40. 40.
    Hunnicutt GR, Kosfiszer MG, Snell WJ: Cell body and flagellar agglutinins in Chlamydomonas reinhardtii: the cell body plasma membrane is a reservoir for agglutinins whose migration to the flagella is regulated by a functional barrier. J Cell Biol 111: 1605–1616 (1990).PubMedCrossRefGoogle Scholar
  41. 41.
    Hwang C, Monk BC, Goodenough UW: Linkage of mutations affecting minus flagellar membrane agglutinability to the mt mating-type locus of Chlamydomonas. Genetics 99: 41–47 (1981).PubMedGoogle Scholar
  42. 42.
    Jones PL, Schmidhauser C, Bissell MJ: Regulation of gene expression and cell function by extracellular matrix. Crit Rev Eukaryot Gene Expr 3: 137–154 (1993).PubMedGoogle Scholar
  43. 43.
    Jones R: Physiological and biochemical aspects of growth and gametogenesis in Chlamydomonas reinhardtii. Ann NY Acad Sci 175: 649–659 (1970).CrossRefGoogle Scholar
  44. 44.
    Jones RF, Kates JR, Keller SJ: Protein turnover and macromolecular synthesis during growth and gametic differentiation in Chlamydomonas reinhardtii. Biochim Biophys Acta 157: 589–598 (1968).PubMedCrossRefGoogle Scholar
  45. 45.
    Kalshoven HW, Musgrave A, van den Ende H: Mating receptor complex in the flagellar membrane of Chlamydomonas eugametos gametes. Sex Plant Reprod 3: 77–87 (1990).CrossRefGoogle Scholar
  46. 46.
    Kaufman L: Transduction of blue-light signals. Plant Physiol 102: 333–337 (1993).PubMedGoogle Scholar
  47. 47.
    Kindle KL: High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87: 1228–1232 (1990).PubMedCrossRefGoogle Scholar
  48. 48.
    Kinoshita T, Fukuzawa H, Shimada T, Saito T, Matsuda Y: Primary structure and expression of a gamete lytic enzyme in Chlamydomonas reinhardtii: similarity of functional domains to matrix metalloproteases. Proc Natl Acad Sci USA 89: 4693–4697 (1992).PubMedCrossRefGoogle Scholar
  49. 49.
    Kooijman R, Elzenga TJM, de Wildt P, Musgrave A, Schuring F, van den Ende H: Light dependence of sexual agglutinability in chlamydomonas eugametos. Planta 169: 370–378 (1986).CrossRefGoogle Scholar
  50. 50.
    Kooijman R, de Wildt P, Homan WL, Musgrave A, van den Ende H: Light affects flagellar agglutin ability in Chlamydomonas eugametos by modification of the agglutinin molecules. Plant Physiol 86: 216–223 (1988).PubMedCrossRefGoogle Scholar
  51. 51.
    Kooijman R, de Wildt P, van den Briel W, Tan S, van den Ende H: Cyclic AMP is one of the intracellular signals during the mating of Chlamydomonas eugametos. Planta 181: 529–537 (1990).CrossRefGoogle Scholar
  52. 52.
    Li HM, Washburn T, Chory J: Regulation of gene expression by light. Curr Opin Cell Biol 5: 455–460 (1993).PubMedCrossRefGoogle Scholar
  53. 53.
    Lin CQ, Bissei MJ: Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J 7: 737–743 (1993).PubMedGoogle Scholar
  54. 54.
    Martin NC, Goodenough UW: Gametic differentiation in Chlamydomonas reinhardtii. J Cell Biol 67: 587–605 (1975).PubMedCrossRefGoogle Scholar
  55. 55.
    Matsuda Y, Tamaki S, Tsubo Y: Mating type specific induction of cell wall lytic factor by agglutination of gametes in Chlamydomonas reinhardtii. Plant Cell Physiol 19: 1253–1261 (1978).Google Scholar
  56. 56.
    Matsuda Y, Saito T, Umemoto T, Tsubo Y: Transmission patterns of chloroplast genes after polyethylene glycol-induced fusion of gametes in non-mating mutants of Chlamydomonas reinhardtii. Curr Genet 14: 53–58 (1988).CrossRefGoogle Scholar
  57. 57.
    Matsuda Y, Shimada T, Sakamoto Y: Ammonium ions control gametic differentiation and dedifferentiation in Chlamydomonas reinhardtii. Plant Cell Physiol 33: 909–914 (1992).Google Scholar
  58. 58.
    Matters GL, Goodenough UW: A gene/pseudogene tandem duplication encodes a cysteine-rich protein expressed during zygote development in Chlamydomonas reinhardtii. Mol Gen Genet 232: 81–88 (1992).PubMedCrossRefGoogle Scholar
  59. 59.
    Mesland DAM, Hoffman JL, Caligor E, Goodenough UW: Flagellar tip activation stimulated by membrane adhesions in Chlamydomonas gametes. J Cell Biol 84: 599–617 (1980).PubMedCrossRefGoogle Scholar
  60. 60.
    Mitchell DR, Kang Y: Identification of oda6 as a Chlamydomonas dynein mutant by rescue with the wild-type gene. J Cell Biol 113: 835–842 (1991).PubMedCrossRefGoogle Scholar
  61. 61.
    Musgrave A: Mating in Chlamydomonas. In: Round FE, Chapman DJ (eds), Progress in Phycological Research, vol. 9, pp. 193–237. Biopress, Bristol (1993).Google Scholar
  62. 62.
    Musgrave A, Kuin H, Jongen M, de Wildt P, Schuring F, Klerk H, van den Ende H: Ethanol stimulates phospholipid turnover and inositol 1,4,5-trisphosphate production in Chlamydomonas eugametos gametes. Planta 186: 442–449 (1992).CrossRefGoogle Scholar
  63. 63.
    Musgrave A, Schuring F, Munnik T, Visser K: Inositol 1,4,5-trisphosphate as fertilization signal in plants: testcase Chlamydomonas eugametos. Planta 171: 280–284.Google Scholar
  64. 64.
    Nultsch W, Pfau J, Dolle R: Effects of calcium channel blockers on phototaxis and motility of Chlamydomonas reinhardtii. Arch Microbiol 144: 393–397 (1986).CrossRefGoogle Scholar
  65. 65.
    Pasquale SM, Goodenough UW: Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii. J Cell Biol 105: 2279–2292 (1987).PubMedCrossRefGoogle Scholar
  66. 66.
    Pijst HLA, van Driel R, Janssens PMW, Musgrave A, van den Ende H: Cyclic AMP is involved in sexual reproduction of Chlamydomonas eugametos. FEBS Lett 174: 132–136 (1984).CrossRefGoogle Scholar
  67. 67.
    Quarmby LM, Hartzell HC: Two distinct, calcium-mediated, signal transduction pathways can trigger de-flagellation in Chlamydomonas reinhardtii. J Cell Biol 124: 807–815 (1994).PubMedCrossRefGoogle Scholar
  68. 68.
    Quarmby LM, Yueh YG, Cheshire JL, Keller LR, Snell WJ, Crain RC: Inositol phospholipid metabolism may trigger flagellar excision in Chlamydomonas reinhardtii. J Cell Biol 116: 737–744(1992).PubMedCrossRefGoogle Scholar
  69. 69.
    Ranum LPW, Thompson MD, Schloss JA, Lefebvre PA, Silflow CD: Mapping flagellar genes in Chlamydomonas using restriction fragment length polymorphisms. Genetics 120: 109–122 (1988).PubMedGoogle Scholar
  70. 70.
    Rosenbaum JL, Carlson K: Cilia regeneration in Tetrahymena and its inhibition by colchicine. J Cell Biol 40: 415–425 (1969).PubMedCrossRefGoogle Scholar
  71. 71.
    Sager R, Granick S: Nutritional control of sexuality in Chlamydomonas reinhardi. J Gen Physiol 37: 729–742 (1954).PubMedCrossRefGoogle Scholar
  72. 72.
    Saito T, Matsuda Y: Sexual agglutinin of mating-type minus gametes in Chlamydomonas reinhardii. Exp Cell Res 152: 322–330 (1984).PubMedCrossRefGoogle Scholar
  73. 73.
    Saito T, Matsuda Y: Isolation and characterization of Chlamydomonas temperature-sensitive mutants affecting gametic differentiation under nitrogen-starved conditions. Curr Genet 19: 65–71 (1991).PubMedCrossRefGoogle Scholar
  74. 74.
    Saito T, Tsubo Y, Matsuda Y: Synthesis and turnover of cell body-agglutinin as a pool for flagellar surface-agglutinin in Chlamydomonas reinhardii. Arch Microbiol 142: 207–210 (1985).CrossRefGoogle Scholar
  75. 75.
    Saito T, Tsubo Y, Matsuda Y: A new assay system to classify non-mating mutants and to distinguish between vegetative cell and gamete in chlamydomonas reinhardtii. Curr Genet 14: 59–63 (1988).CrossRefGoogle Scholar
  76. 76.
    Saito T, Small L, Goodenough UW: Activation of adenylyl cyclase in Chlamydomonas reinhardtii by adhesion and by heat. J Cell Biol 122: 137–147 (1993).PubMedCrossRefGoogle Scholar
  77. 77.
    Salisbury JL, Sanders MA, Harpst L: Flagellar root contraction and nuclear movement during flagellar regeneration in Chlamydomonas reinhardtii. J Cell Biol 105: 1799–1805 (1987).PubMedCrossRefGoogle Scholar
  78. 78.
    Sanders MA, Salisbury JL: Centrin plays an essential role in microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol 79: 795–806 (1994).CrossRefGoogle Scholar
  79. 79.
    Schnell RA, Lefebvre PA: Isolation of the Chlamydomonas Regulatory Gene NIT2 by Transposon Tagging. Genetics society of America, vol. 124, pp. 737–747 (1993).Google Scholar
  80. 80.
    Schulze D, Robenek H, McFadden GI, Melkonian M: Immunoiocalization of a calcium-modulated contractile protein in the flagellar apparatus of green algae: the nucleus-basal body connector. Eur J Cell Biol 45: 51–61 (1987).Google Scholar
  81. 81.
    Schuring F, Smeenk JW, Homan WL, Musgrave A, van den Ende H: Occurrence of O-methylated sugars in surface glycoconjugates in chlamydomonas eugametos. Planta 170: 322–327 (1987).CrossRefGoogle Scholar
  82. 82.
    Schuring F, Brederoo J, Musgrave A, van den Ende H: Increase in calcium triggers mating structure activations in Chlamydomonas eugametos. Federation of Microbiological Societies, vol. 71, pp. 237–240 (1990).CrossRefGoogle Scholar
  83. 83.
    Schuring F, Musgrave A, Elders MCC, Teunissen Y, Homan WL, van den Ende H: Fusion-defective mutants of Chlamydomonas eugametos. Protoplasma 162: 108–119(1991).CrossRefGoogle Scholar
  84. 84.
    Showalter AM, Rumeau D: Molecular biology of plant cell wall hydroxyproline-rich glycoproteins. In: Adair WS, Mecham RP (eds) Organization and Assembly of Plant and Animal Extracellular Matrix, pp. 247–281. Academic Press, San Diego (1990).CrossRefGoogle Scholar
  85. 85.
    Smith GM, Regnery DC: Inheritance of sexuality in Chlamydomonas reinhardi. Proc Natl Acad Sci USA 36: 246–248 (1950).PubMedCrossRefGoogle Scholar
  86. 86.
    Snell WJ: Signal transduction during fertilization in Chlamydomonas. In: Kurjan J (ed) Signal Transduction: Prokaryotic and Simple Eukaryotic Systems, pp. 255–277. Academic Press, New York (1993).Google Scholar
  87. 87.
    Snell WJ, Moore WS: Aggregation-dependent turnover of flagellar adhesion molecules in Chlamydomonas gametes. J Cell Biol 84: 203–210 (1980).PubMedCrossRefGoogle Scholar
  88. 88.
    Snell WJ, Roseman S: Kinetics of adhesion and de-adhesion of chlamydomonas gametes. J Biol Chem 254: 10820–10829 (1979).PubMedGoogle Scholar
  89. 89.
    Snell WJ, Buchanan M, Clausell A: Lidocaine reversibly inhibits fertilization in Chlamydomonas: a possible role for calcium in sexual signalling. Cell Biol 94: 607–612(1982).CrossRefGoogle Scholar
  90. 90.
    Snell WJ, Kosfizer MG, Clausell A, Perillo N, Imam S, Hunnicutt G: A monoclonal antibody that blocks adhesion of Chlamydomonas mt+ gametes. J Cell Biol 103: 2449–2456 (1986).PubMedCrossRefGoogle Scholar
  91. 91.
    Snell WJ, Eskue WA, Buchanan MJ: Regulated secretion of a serine protease that activates an extracellular matrix-degrading metalloprotease during fertilization in Chlamydomonas. J Cell Biol 109: 1689–1694 (1989).PubMedCrossRefGoogle Scholar
  92. 92.
    Takasawa S, Nata K, Yonekura H, Okamoto H: Cyclic ADP-ribose in insulin secretion from pancreatic beta cells. Science 259: 370–373 (1993).PubMedCrossRefGoogle Scholar
  93. 93.
    Tarn LW, Lefebvre PA: Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics 135: 375–384 (1993).Google Scholar
  94. 94.
    Tomson AM, Demets R, Bakker NPM, Stegwee D, van den Ende H: Gametogenesis in liquid cultures of Chlamydomonas eugametos. J Gen Microbiol 131: 1553–1560 (1985).Google Scholar
  95. 95.
    Treier U, Beck CF: Changes in gene expression patterns during the sexual life cycle of Chlamydomonas reinhardtii. Physiol Plant 83: 633–639 (1991).CrossRefGoogle Scholar
  96. 96.
    Treier U, Fuchs S, Weber M, Wakarchuk WW, Beck CF: Gametic differentiation in Chlamydomonas reinhardtii: light dependence and gene expression patterns. Arch Microbiol 152: 572–577 (1989).CrossRefGoogle Scholar
  97. 97.
    Uchida H, Kawano S, Sato N, Kuroiwa T: Isolation and characterization of novel genes which are expressed during the very early stage of zygote formation in Chlamydomonas reinhardtii. Curr Genet 24: 296–300 (1993).PubMedCrossRefGoogle Scholar
  98. 98.
    Vallon O, Bulte L, Kuras R, Olive J, Wollman F: Extensive accumulation of an extracellular L-amino-acid oxidase during gametogenesis of Chlamydomonas reinhardtii. Eur J Biochem 215: 351–360 (1993).PubMedCrossRefGoogle Scholar
  99. 99.
    Van den Ende H: Vegetative and gametic development in the green alga Chlamydomonas. Adv Bot Res, in press (1994).Google Scholar
  100. 100.
    Van Winkle-Swift KP: Chlamydomonas surrenders. Nature 358: 106–107 (1992).CrossRefGoogle Scholar
  101. 101.
    Von Gromoff ED, Beck CF: Genes expressed during differentiation of Chlamydomonas reinhardtii. Mol Gen Genet 241: 415–421 (1993).PubMedGoogle Scholar
  102. 102.
    Walton PD, Airey JA, Sutko JL, Beck CF, Mignery GA, Sudhof TC, Deerinck TJ, Ellisman MH: Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar purkinje neurons. J Cell Biol 113: 1145–1157 (1991).PubMedCrossRefGoogle Scholar
  103. 103.
    Wegener D, Beck CF: Identification if novel genes specifically expressed in Chlamydomonas reinhardtii zygotes. Plant Mol Biol 16: 937–946 (1991).PubMedCrossRefGoogle Scholar
  104. 104.
    Weissig H, Beck CF: Action spectrum for the light-dependent step in gametic differentiation of Chlamydomonas reinhardtii. Plant Physiol 97: 118–121 (1990).CrossRefGoogle Scholar
  105. 105.
    White AM, Watson SP, Galione A: Cyclic ADP-ribose-induced Ca2+ release from rat brain microsomes. FEBS Lett 318: 259–263 (1993).PubMedCrossRefGoogle Scholar
  106. 106.
    Witman GB: Chlamydomonas phototaxis. Trends Cell Biol 3: 403–408 (1993).PubMedCrossRefGoogle Scholar
  107. 107.
    Woessner JP, Goodenough UW: Molecular characterization of a zygote wall protein: an extensin-like molecule in Chlamydomonas reinhardtii. Plant Cell 1: 901— 911 (1989).PubMedGoogle Scholar
  108. 108.
    Zachleder V, Jakobs M, van den Ende H: Relationship between gametic differentiation and the cell cycle in the green alga Chlamydomonas eugametos. J Gen Microbiol 137: 1333–1339 (1991).CrossRefGoogle Scholar
  109. 109.
    Zhang Y, Snell WJ: Differential regulation of adenylyl-cyclases in vegetative and gametic flagella of Chlamydomonas. J Biol Chem 268: 1786–1791 (1993).PubMedGoogle Scholar
  110. 110.
    Zhang Y, Snell WJ: Flagellar adhesion-dependent regulation of Chlamydomonas adenylyl cyclase in vitro: a possible role for protein kinases in sexual signalling. J Cell Biol 617–624 (1994).Google Scholar
  111. 111.
    Zhang Y, Ross EM, Snell WJ: ATP-dependent regulation of flagellar adenylylcyclase in gametes of Chlamydomonas reinhardtii. J Biol Chem 266: 22954–22959 (1991).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Lynne M. Quarmby
    • 1
  1. 1.HeartCell Laboratory of Chlamydomonas Research, Department of Anatomy & Cell BiologyEmory University School of MedicineAtlantaUSA

Personalised recommendations