Cytokines and the host defense against Listeria monocytogenes and Salmonella typhimurium

  • Jan A. M. Langermans
  • Ralph van Furth


The host defense against intracellular pathogens depends largely on activation of phagocytes and is regulated by a complex network of cytokines. Modulation of this cytokine network might lead to new or additional therapies in the treatment of infections with intracellular pathogens. Therefore, insight in the role of various cytokines in the host defense against these pathogens is required. The present contribution summarizes the results of various studies on the role of different cytokines in the host defense against the intracellular bacteria Listeria monocytogenes and Salmonella typhimurium.

Key words

Cytokines macrophages intracellular pathogens activation deactivation hepatocytes 



reactive oxygen intermediates


interferon γ


tumor necrosis factors




colony-stimulating factor


cerebrospinal fluid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Langermans JAM, Nibbering PH, van der Hülst MEB, van Furth R. Macrophage activation by recombinant cytokines. In: van Fürth R, ed. Mononuclear phagocytes. Biology of monocytes and macrophages. Dordrecht, Boston, London: Kluwer Academic Publishers, 1992: 602–617.Google Scholar
  2. 2.
    Mitsuyama M, Takeya K, Nomoto K, Shimotori S. Three phases of phagocyte contribution to resistance against Listeria monocytogenes. J Gen Microbiol 1978; 106: 165–171.PubMedCrossRefGoogle Scholar
  3. 3.
    Hsu H. Pathogenesis and immunity in murine salmonellosis. Microbiol Rev 1989; 53: 390–409.PubMedGoogle Scholar
  4. 4.
    Wood S, Maroushek N, Czuprynski CJ. Multiplication of Listeria monocytogenes in a murine hepatocyte cell line. Infect Immun 1993; 61: 3068–3072.PubMedGoogle Scholar
  5. 5.
    Mielke ME, Hahn H. T-cell-phagocyte interactions induced by Listeria monocytogenes In: Van Fürth R, ed. Mononuclear phagocytes. Biology of monocytes and macrophages. Dordrecht, Boston, London, Kluwer Academic Publishers, 1992: 577–584.Google Scholar
  6. Mackaness GB. Resistance to intracellular infection. J Infect Dis1971; 123: 439–445.PubMedCrossRefGoogle Scholar
  7. 7.
    Mackaness GB. Cellular resistance to infection. J Exp Med 1962; 116: 381–417.PubMedCrossRefGoogle Scholar
  8. 8.
    Mackaness GB. The immunological basis of acquired resistance. J Exp Med 1964; 120: 105–120.PubMedCrossRefGoogle Scholar
  9. 9.
    Collins FM. Vaccines and cell-mediated immunity. Bact Rev 1975; 38: 371–402.Google Scholar
  10. 10.
    Blanden RV, Mackaness GB, Collins FM. Mechanisms of aquired resistance in mouse typhoid. J Exp Med 1966; 124: 585–600.PubMedCrossRefGoogle Scholar
  11. 11.
    North RJ. Introduction to macrophage activation. Lymphognes 1981; 3: 1–10.Google Scholar
  12. 12.
    Simon HB, Sheagren JN. Enhancement of macrophage bactericidal activity by antigenically stimulated lymphocytes. Cell Immunol 4: 163–174.Google Scholar
  13. 13.
    Fowles RE, Fajardo IM, Leibowitch JL, David JR. The enhancement of macrophage bacteriostasis by products of activated lymphocytes. J Exp Med 1973; 138: 952–964.PubMedCrossRefGoogle Scholar
  14. 14.
    Wheelock EF. Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin. Science 1965; 149:310–311.CrossRefGoogle Scholar
  15. 15.
    Gray PW, Goeddel DV. Structure of the human immune interferon gene. Nature 1982; 298: 859–863.PubMedCrossRefGoogle Scholar
  16. 16.
    Gray PW, Goeddel DW. Cloning and expression of murine interferon cDNA. Proc Natl Acad Sci USA 1983; 80: 5842–5846.PubMedCrossRefGoogle Scholar
  17. 17.
    Hiromatsu K, Yoshikai Y, Matsuzaki G, Ohga S, Muramori K, Matsumoto K, Bluestone JA, Nomoto K. A protective role of γ/δ T cells in primary infection with Listeria monocytogenes in mice. J Exp Med 1992; 175: 49–56.PubMedCrossRefGoogle Scholar
  18. 18.
    Garcia-Penarrubia P, Koster FT, Kelley RO, McDowell TD, Bankhurst AD. Antibacterial activity of natural killer cells. J Exp Med 1989; 169:99–113.PubMedCrossRefGoogle Scholar
  19. 19.
    Dunn PL, North RJ. Early gamma interferon production by natural killer cells is important in defense against murine listeriosis. Infect Immun 1991; 59: 2892–2900.PubMedGoogle Scholar
  20. 20.
    Follows GA, Munk ME, Gatrill AJ, Conradt P, Kaufmann SHE. Gamma interferon and interleukin 2, but not interleukin 4, are detectable in γ/δ T-cell cultures after activation with bacteria. Infect Immun 1992; 60: 1229–1231.PubMedGoogle Scholar
  21. 21.
    Skamene E. Genetic regulation of host resistance to bacterial infection. Rev Infect Dis 1983; 5: S823-S832.PubMedCrossRefGoogle Scholar
  22. 22.
    Sluiter W, Elzenga-Claasen I, van der Voort, van der Kley-van Andel A, van Fürth R. Differences in the response of inbred mouse strains to the factor increasing monocytopoiesis. J Exp Med 1984; 159: 524–536.PubMedCrossRefGoogle Scholar
  23. 23.
    Hahn H, Kaufmann SHE. The role of cell-mediated immunity in bacterial infections. Rev Infect Dis 1981; 3: 1221–1250.PubMedCrossRefGoogle Scholar
  24. 24.
    Van Dissel JT, Stikkelbroeck JJM, van den Barselaar MTh, Sluiter W, Leijh PC J, van Fürth R. Divergent antimicrobial activity after immunologic activation of mouse peritoneal macrophages. J Immunol 1987; 139: 1665–1672.PubMedGoogle Scholar
  25. 25.
    Langermans JAM, Nibbering PH, van der Hulst MEB, van Fürth R. Microbicidal activities of Salmonella typhimuriumand interferon-gamma-activated mouse peritoneal macrophages. Pathobiol 1991; 59: 189–193.CrossRefGoogle Scholar
  26. 26.
    Langermans JAM, van der Hülst MEB, Nibbering PH, van Furth R. Activation of mouse peritoneal macrophages during infection with Salmonella typhimurium does not result in enhanced intracellular killing. J Immunol 1990; 144: 4340–4346.PubMedGoogle Scholar
  27. 27.
    Lin FR, Hsu HS, Mumaw VR, Moncure CW. Confirmation of destruction of salmonellae within murine peritoneal exudate cells by immunocytochemical technique. Immunology 1989; 67: 394–400.PubMedGoogle Scholar
  28. 28.
    Buchmeier NA, Schreiber RD. Requirement of endogenous interferon-gamma production for resolution of Listeria monocytogenes infection. Proc Natl Acad Sci USA 1985; 82: 7404–7408.PubMedCrossRefGoogle Scholar
  29. 29.
    Huang S, Hendriks W, Althage A, Hemm S, Bluethmannn H, Kamijo R, Vilcek J, Zinkernagell RM, Aguet M. Immune response in mice that lack the interferon-γ recepor. Science 1993; 259: 1742–1745.PubMedCrossRefGoogle Scholar
  30. 30.
    Kiderlen AF, Kaufmann SHE, Lohmann-Matthes ML. Protection of mice against the intracellular bacterium L. monocytogenes by recombinant immune interferon. Eur J Immunol 1984; 14: 964–967.PubMedCrossRefGoogle Scholar
  31. 31.
    Langermans JAM, van der Hulst MEB, Nibbering PH, van der Meide PH, van Furth R. Intravenous injection of interferon- γ inhibits the proliferation of Listeria monocytogenes in the liver but not in the spleen and peritoneal cavity. Immunology 1992; 77: 354–361.PubMedGoogle Scholar
  32. 32.
    Matsumura H, Onozuka K, Terada Y, Nakano Y, Nakano M. Effect of murine recombinant interferon- γ in the protection of mice against Salmonella. Int J Immunopharmacol 1990; 12: 49–56.PubMedCrossRefGoogle Scholar
  33. 33.
    Nauciel C, Espinasse-Maes F. Role of gamma interferon and tumor necrosis factor alpha in resistance to Salmonella typhimurium. Infect Immun 1992; 60: 450–454.PubMedGoogle Scholar
  34. 34.
    Kagaya K, Watanabe K, Fukazawa Y Capacity of recom- binant gammma interferon to activate macrophages for Salmonella-killing activity. Infect Immun 1989; 57: 609–615.PubMedGoogle Scholar
  35. 35.
    Van Dissel JT, Stikkelbroeck JJM, Michel BC, van den Barselaar MTh, Leijh PCJ, van Furth R. Inability of recombinant interferon- γ to activate the antibacterial activity of mouse peritoneal macrophages against Listeria monocytogenes and Salmonella typhimurium. J Immunol 1987; 139: 1673–1678.PubMedGoogle Scholar
  36. 36.
    Campbell PA, Canono BP, Cook JL. Mouse macrophages stimulated by recombinant gamma interferon to kill tumor cells are not bactericidal for the facultative intracellular bacterium Listeria monocytogenes. Infect Immun 1988; 56: 1371–1375.PubMedGoogle Scholar
  37. 37.
    Edwards III CK, Ghiasuddin SM, Yunger LM, Lorence RM, Arkins S, Dantzer R, Kelley KW. In vivo administration of recombinant growth hormone or gamma interferon activates macrophages: enhanced resistance to experimental Salmonella typhimurium infection is correlated with generation of reactive oxygen intermediates. Infect Immun 1992; 60: 2514–2521.PubMedGoogle Scholar
  38. 38.
    Langermans JAM, Mayanski DM, Nibbering PH, van der Hulst MEB, van de Gevel JS, van Fürth R. Effect of IFN- γ and endogenous TNF-α on the histopathological changes in the liver of L. monocytogenes-infected mice. Immunology, 1994; 81: 192–197.PubMedGoogle Scholar
  39. 39.
    Portnoy DA, Schreiber RD, Connelly P, Tilney LG. γ Interferon limits access of Listeria monocytogenes to the macrophage cytoplasm. J Exp Med 1989; 170: 2141–2146.PubMedCrossRefGoogle Scholar
  40. 40.
    Gregory SH, Wing EJ. IFN- γ inhibits the replication of Listeria monocytogenes in hepatocytes. J Immunol 1993; 151: 1401–1409.PubMedGoogle Scholar
  41. 41.
    Bancroft GJ, Sheehan KCF, Schreiber RD, Unanue ER. Tumor necrosis faactor is involved in the T cell-independent pathway of macrophage activation in SCID mice. J Immunol 1989; 143: 127–130.PubMedGoogle Scholar
  42. 42.
    Wherry JC, Schreiber RD, Unanue ER. Regulation of gamma interferon production by natural killer cells in seid mice. Roles of tumor necrosis factor and bacterial stimuli. Infect Immun 1991; 59: 1709–1715.PubMedGoogle Scholar
  43. 43.
    Green SJ, Crawford RM, Hockmeyer JT, Meltzer MS, Nacy CA. Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN- γ -stimulated macrophages by induction of tumor necrosis factor a. J Immunol 1990; 145: 4290–4297.PubMedGoogle Scholar
  44. 44.
    Langermans JAM, van der Hülst MEB, Nibbering PH, Hiemstra PS, Fransen L, van Furth R. IFN- γ -induced L-argininedependent toxoplasmastatic activity in murine peritoneal macrophages is mediated by endogenous tumor necrosis factor α. J Immunol 1992; 148: 568–574.PubMedGoogle Scholar
  45. 45.
    Havell EA. Evidence that tumor necrosis factor has an important role in antibacterial resistance. J Immunol 1989; 143: 2894–2899.PubMedGoogle Scholar
  46. 46.
    Nakane A, Minagawa T, Kato K. Endogenous tumor necrosis factor (cachectin) is essential to host resistance against Listeria monocytogenes infection. Infect Immun 1988; 56: 2563–2569.PubMedGoogle Scholar
  47. 47.
    Desiderio JV, Kiener PA, Lin PF, Warr GA. Protection of mice against Listeria monocytogenes infection by recombinant tumor necrosis factor alpha. Infect Immun 1989; 57: 1615–1617.PubMedGoogle Scholar
  48. 48.
    Roll JT, Young KM, Durtz RS, Czuprynski CJ. Human rTNF- α augments anti-bacterial resistance in mice; potentiation of its effects by recombinant human rIL-α. Immunology 1990; 69: 316–322.PubMedGoogle Scholar
  49. 49.
    Pfeffer K, Matsuyama T, Kündig TM, Wakeham A, Kishihara K, Shahinian A, Wiegmann K, Ohashi PS, Krönke M, Mak TW. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succum to L. monocytogenes infection. Cell 1993; 73: 457–467.PubMedCrossRefGoogle Scholar
  50. 50.
    Langermans JAM, van der Hülst MEB, Nibbering PH, van Furth R. Endogenous tumor necrosis factor alpha is required for enhanced antimicrobial activity against Toxoplasma gondii and Listeria monocytogenes in gammainterferon-treated mice. Infect Immun 1992; 60: 5107–5112.PubMedGoogle Scholar
  51. 51.
    Langermans JAM. The cytokine network, macrophage activation, and enhanced antimicrobial activity. A central role for TNF-α. Thesis Rijksuniversity Leiden, The Netherlands. 1992; 95–101.Google Scholar
  52. 52.
    Kindler V, Sappino AP, Grau GE, Piguet PF, Vassali P. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 1989; 56: 731–740.PubMedCrossRefGoogle Scholar
  53. 53.
    Mielke MEA, Rosen H, Brocke S, Peters C, Hahn H. Protective immunity and granuloma formation are mediated by two distinct but TNF-α and IFN-γ-dependent T cell-phagocyte interactions in murine listeriosis. Dissociation on the basis of phagocyte adhesion mechanisms. Infect Immun 1992; 60: 1875–1882.PubMedGoogle Scholar
  54. 53a.
    Van Fürth R, Van Zwet Th. L., Buisman AM, Van Dissel JT. Anti-tumor necrosis factor antibodies inhibit the influx of granulocytes and monocytes into an inflammatory exudate and enhance the growth of Listeria monocytogenes in various organs. J. Infect. Dis. 1994; 170: 234–237.PubMedCrossRefGoogle Scholar
  55. 54.
    Denis M. Growth of listeria monocytogenes in murine macrophages and its modulation by cytokines; activation of bactericidal activity by interleukin-4 and interleukin-6. Can J Microbiol 1991; 37: 253–257.PubMedCrossRefGoogle Scholar
  56. 55.
    Rosen H, Gordon S, North RJ. Exacerbation of murine listeriosis by a monoclonal antibody specific for the type 3 complement receptor of myelomonocytic cells. J Exp Med 1989; 170: 27–37.PubMedCrossRefGoogle Scholar
  57. 56.
    Curran RD, Billiar TR, Stuehr DJ, Hofmann K, Simmons RL. Hepatocytes produce nitrogen oxides from L-arginine in response to inflammatory products from Kupffer cells. J Exp Med 1989; 170: 1769–1774.PubMedCrossRefGoogle Scholar
  58. 57.
    Mellouk S, Green SJ, Nacy CA, Hoffman SL. IFN- γ inhibits development of Plasmodium berghei exoerythrocytic stages in hepatocytes by an L-arginine-dependent effector mechanism. J Immunol 1991; 146: 3971–3976.PubMedGoogle Scholar
  59. 58.
    Gregory SH, Barczynski LK, Wing EJ. Effector function of hepatocytes and Kupffer cells in the resolution of systemic bacterial infections. J Leuk Biol 1992; 51: 421–424.Google Scholar
  60. 59.
    Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 1991; 77: 1627–1652.PubMedGoogle Scholar
  61. 60.
    Ozaki SJ, Ohashi T, Minami A, Nakamura S-I. Enhanced resistance of mice to bacterial infection induced by recombinant interleukin-1α. Infect Immun 1987; 55: 1436–1440.PubMedGoogle Scholar
  62. 61.
    Van der Meer JWM, Barza M, Wolff SM, Dinarello CA. A low dose of recombinant interleukin 1 protects granulocytopenic mice from lethal gram-negative infection. Proc Natl Acad Sci USA 1988; 85: 1620–1623.PubMedCrossRefGoogle Scholar
  63. 62.
    Minami A. Fujimoto K, Ozaki Y, Nakamura S. Augmentation of host resistance to microbial infections by recombinant interleukin-1α. Infect Immun 1988; 56: 3116–3120.PubMedGoogle Scholar
  64. Van ’t Wout JW, van der Meer JWM, Barza M, Dinarello CA. Protection of neutropenic mice from lethal Candida albicans infections by recombinant interleukin 1. Eur J Immunol 1988; 18: 1143–1146.CrossRefGoogle Scholar
  65. 64.
    Curfs JHA, van der Meer JWM, Sauerwein RW, Eling WMC. Low dosages of interleukin 1 protect mice against lethal cerebral malaria. J Exp Med 1990; 172: 1287–1291.PubMedCrossRefGoogle Scholar
  66. 65.
    Kullberg BJ, Van ’t Wout JW, van Fürth R. Role of granulocytes in increased host resistance to Candida albicans induced by recombinant interleukin-1. Infect Immun 1990; 58: 3319–3324.PubMedGoogle Scholar
  67. 66.
    Morrissey PJ, Charrier K. Interleukin-1 administration to C3H/HeJ mice after but not prior to infection increases resistance to Salmonella typhimurium. Infect Immun 1991; 59: 4729–4731.PubMedGoogle Scholar
  68. 67.
    Czuprinsky CJ, Brown JF, Young KM, Cooley AJ, Kurtz RS. Effects of murine recombinant interleukin la on the host response to bacterial infection. J Immunol 1988; 140: 962–968.Google Scholar
  69. 68.
    Czuprynski CJ, Brown JF. Recombinant murine interleukin- 1α enhancement of nonspecific antibacterial resistance. Infect Immun 1987; 55: 2061–2065.PubMedGoogle Scholar
  70. 69.
    Havell EA, Moldawer LL, Helfgott D, Kilian P, Sehgal PB. Type I IL-1 receptorblockade exacerbates murine listeriosis. J Immunol 1992; 148: 1486–1492.PubMedGoogle Scholar
  71. 70.
    Rogers HW, Sheehan KCF, Brunt LM, Dower SK, Unanue ER, Schreiber RD. Interleukin-1 participates in the development of anti-Listeria responses in normal and SCID mice. Proc Natl Acad Sci USA 1992; 89: 1011–1015.PubMedCrossRefGoogle Scholar
  72. 71.
    Malkovsky M, Loveland B, North M, Asherson GL, Gao L, Ward P, Fiers W. Recombinant interleukin-2 directly augments the cytotoxicity of human monocytes. Nature 1987; 325: 262–265.PubMedCrossRefGoogle Scholar
  73. 72.
    Belosovic M, Finbloom DS, Meltzer MS, Nacy CA. IL-2, a cofactor for induction of activated macrophage resistance to infection. J Immunol 1990; 145: 831–839.Google Scholar
  74. 73.
    Haak-Frendscho M, Young KM, Czuprinsky CJ. Treatment of mice with human recombinant interleukin-2 augments resistance to the facultative intracellular pathogen Listeria monocytogenes. Infect Immun 1989; 57: 3014–3021.PubMedGoogle Scholar
  75. 74.
    Tripp CS, Wolf SF, Unanue ER. Interleukin-12 and tumor necrosis factor a are costimulators of interferon γ production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiological antagonist. Proc Natl Acad Sci USA 1993; 90: 3725–3729.PubMedCrossRefGoogle Scholar
  76. 75.
    Iizawa Y, Brown JF, Czuprynski CJ. Early expression of cytokine mRNA in mice infected with Listeria monocytogenes. J Immunol 1992; 60: 4068–4073.Google Scholar
  77. 76.
    Kratz SS, Kurlander R. Characterization of the pattern of inflammatory cell influx and cytkoine production during the murine host response to Listeria monocytogenes. J Immunol 1988; 141: 598–606.PubMedGoogle Scholar
  78. 77.
    Havell EA, Sehgal PB. Tumor necrosis factor-independent IL-6 production during murine listeriosis. J Immunol 1991; 146:756–761.PubMedGoogle Scholar
  79. 78.
    Nakane A, Numatta A, Minagawa T. The role of TNFin listeriosis. In: van Fürth R, ed. Mononuclear phagocytes. Biology of monocytes and macrophages. Dordrecht, Boston, London: Kluwer Academic Publishers, 1992: 626–630.Google Scholar
  80. 79.
    Liu Z, Simpson RJ, Cheers C. Recombinant interleukin-6 protects mice against experimental bacterial infection. Infect Immun 1992; 60: 4402–4406.PubMedGoogle Scholar
  81. 80.
    Czuprynski CJ, Haak-Frendscho M, Maroushek N, Brown JF. Effects of recombinant human interleukin-6 alone and in combination with recombinant interleukin-1α and tumor necrosis factor alpha on antibacterial resistance in mice. Antimicrobial Agents Chemother 1992; 36: 68–70.CrossRefGoogle Scholar
  82. 81.
    Manetti R, Parronchi P, Giudizi MG, Piccini MP, Maggi E, Trinchieri G, Romagnani. Natural killer cell stimulatory factor (Interleukin-12 [IL-12]) induces T helper type 1 (Th1)- specific immune responses and inhibits the development of IL-4 producing Th cells. J Exp Med 1993; 177: 1199–1204.PubMedCrossRefGoogle Scholar
  83. 82.
    Nakane A, Numata A, Asano M, Konahawa M, Chen Y, Minagawa T. Evidence that endogenous gamma interferon is produced early in Listeria monocytogenes infection. 1990; 58: 2386–2388.Google Scholar
  84. 83.
    Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH 1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993; 260: 547–549.PubMedCrossRefGoogle Scholar
  85. 84.
    Schafer R, Eisenstein TK. Natural killer cells mediate protection induced by a Salmonella aroA mutant. Infect Immun 1992; 60: 791–797.PubMedGoogle Scholar
  86. 85.
    Weiser WY, van Niel A, Clark SC, David JR, Remold HG. Recombinant human granulocyte/macrophage colonystimulating factor activates intracellular killing of Leishmania donovani by human monocyte-derived macrophages. J Exp Med 1987; 166: 1436–1446.PubMedCrossRefGoogle Scholar
  87. 86.
    Handman E, Burgess AW. Stimulation by granulocytemacrophage colony stimulating factor of Leishmania tropica killing by macrophages. J Immunol 1979; 122: 1134–1137.PubMedGoogle Scholar
  88. 87.
    Reed SG, Nathan CF, Pihl DL, Rodricks P, Shanebeck K, Conlon PJ, Grabstein KH. Recombinant granulocyte/macrophage colony-stimulating factor activates macrophages to inhibit Trypanosoma cruzi and release hydrogen peroxide. J Exp Med 1987; 166: 1734–1746.PubMedCrossRefGoogle Scholar
  89. 88.
    Sisson SD, Dinarello CA. Production of interleukin- 1α, inter- leukin 1β and tumor necrosis factor by human mononuclear cells stimulated with granulocyte-macrophage colonystimulating factor. Blood 1988; 72: 1368–1374.PubMedGoogle Scholar
  90. 89.
    Morrisey PJ, Charrier K. GM-CSF administration augments the survival of ITY-resistant A/J mice, but not ITY-susceptible C57B1/6 mice, to a lethal challenge with Salmonella typhimurium. J Immunol 1990; 144: 557–561.Google Scholar
  91. 90.
    Metcalf D. The granulocyte-macrophage colony-stimulating factors. Science 1985; 229: 16–22.PubMedCrossRefGoogle Scholar
  92. 91.
    Mufson RA, Aghajanian J, Wong G, Woodhouse C, Morgan AC. Macrophage colony-stimulating factor enhances monocyte and macrophage antibody-dependent cell-mediated cytotoxicity. Cell Immunol 1989; 119: 182–192.PubMedCrossRefGoogle Scholar
  93. 92.
    Ehlers S, Mielke MEA, Blankenstein T, Hahn H. Kinetic analysis of cytokine gene expression in the livers of naive and immune mice infected with Listeria monocytogenes. The immediate early phase in innate resistance and acquired immunity. J Immunol 1992; 149: 3016–3022.PubMedGoogle Scholar
  94. 93.
    Gregory SH, Wing EJ, Tweardy DJ, Shadduck RK, Lin HS. Primary listerial infections are exacerbated in mice administered neutralizing antibody to macrophage colony-stimulating factor. J Immunol 1992; 149: 188–193.PubMedGoogle Scholar
  95. 94.
    Kayashima S, Tsuru S, Shinomiya N, Katsura Y, Motoyoshi K, Rokutanda M, Nagata N. Effects of macrophage colonystimulating factor on reduction of viable bacteria and survival of mice during Listeria monocytogenes infection: characteristics of monocyte subpopulations. Infect Immun 1991; 59: 4677–4680.PubMedGoogle Scholar
  96. 95.
    Cohen AM, Hines DK, Korach ES, Ratzkin BJ. In vivo activation of neutrophil function in hamsters by recombinant human granulocyte colony-stimulating factor. Infect Immun 1988; 56:2861–2865.PubMedGoogle Scholar
  97. 96.
    Conlan JW, North RJ. Neutrophil-mediated dissolution of infected host cells as a defense strategy against a facultative intracellular pathogen. J Exp Med 1991; 174: 741–744.PubMedCrossRefGoogle Scholar
  98. 97.
    Conlan JW, North RJ. Early pathogenesis of infection in the liver with the facultative intracellular bacteria Listeria monocytogenes, Francisella tularensis, and Salmonella typhimurium involves lysis of infected hepatocytes by leukocytes. Infect Immun 1992; 60: 5164–5171.PubMedGoogle Scholar
  99. 98.
    Cheers C, Haigh AM, Kelso A, Metcalf D, Stanley ER, Young AM. Production of colony-stimulating factors (CSFs)during infection. Separate determinations of macrophage-, granulocyte-, granulocyte-macrophage-, and multi-CSFs. Infect Immun 1988; 56: 247–251.PubMedGoogle Scholar
  100. 99.
    Shinomiya N, Tsuru S, Katsura Y, Kayashima S, Nomoto K. Enhanced resistance against Listeria monocytogenes achieved by pretreatment with granulocyte colonystimulating factor. Infect Immun 1991; 59: 4740–4743.PubMedGoogle Scholar
  101. 100.
    Serushago A, Yoshikai Y, Handa T, Mitsuyama M, Muramori K, Nomoto K. Effect of recombinnant human granulocyte colony-stimulating factor (rhG-CSF) on murine resistance against Listeria monocytogenes. Immunology 1992; 75:475–480.PubMedGoogle Scholar
  102. 101.
    Dale DC. Granulocyte colony-stimulating factor in infectious diseases. Current Opinion in Infectious Diseases 1993; 6: 369–373.Google Scholar
  103. 102.
    Wirth JJ, Kierzenbaum F, Zlotnick A. Effects of IL-4 on macrophage functions: increased uptake and killing of a protozoan parasite (Trypanosoma cruzi). Immunol 1989; 66: 296–302.Google Scholar
  104. 103.
    Stenger S, Solbach W, Röllinghoff M, Bogdan C. Cytokine interaction in experimental cutaneous leishmaniasis II. endogenous tumor necrosis factor-α production by macrophages is induced by the synergistic action of interferon-(IFN)- γ and interleukin (IL) 4 and accounts for the antiparasitic effect mediated by IFN-γ and IL-4. Eur J Immunol 1991; 21: 1669–1675.PubMedCrossRefGoogle Scholar
  105. 104.
    Abramson SL, Gallin JI. IL-4 inhibits superoxide production by human mononuclear phagocytes. J Immunol 1990; 144: 625–630.PubMedGoogle Scholar
  106. 105.
    Te Velde AA, Huijbens RJF, Heije K, de Vries JE, Figdor CG. Interleukin 4 (IL-4) inhibits secretion of IL-1β, tumor necrosis factor α and IL-6 by human monocytes. Blood 1990; 76: 1392–1397.Google Scholar
  107. 106.
    McBride WH, Economou JS, Nayersina R, Comora S, Essner R. Influence of interleukin 2 and 4 on tumor necrosis factor production by murine mononuclear phagocytes. Cancer Res 1990; 50: 2949–2952.PubMedGoogle Scholar
  108. 107.
    Vannier E, Miller LC, Dinarello CA. Coordinated antiinflammatory effects of interleukin 4: Interleukin 4 suppresses interleukin 1 production but up-regulates gene expression and synthesis of interleukin 1 receptor antagonist. Proc Natl Acad Sci USA 1992; 89: 4076–4080.PubMedCrossRefGoogle Scholar
  109. 108.
    Haak-Frendscho M, Brown JF, Iizawa Y, Wagner RD, Czuprynski CJ. Administration of anti-IL-4 monoclonal anti- body 11B 11 increases the resistance of mice to Listeria monocytogenes infection. J Immunol 1992; 148: 3978–3985.PubMedGoogle Scholar
  110. 109.
    Al-Ramadi BK, Chen YW, Meissler JJ Jr, Eisenstein TK. Immmunosuppression induced by attenuated Salmonella. Reversal by IL-4. J Immunol 1991; 147: 1954–1961.PubMedGoogle Scholar
  111. 110.
    De Waal-Malefyt R, Abrams J, Bennett B, Figdor C, de Vries JE. IL-10 inhibits cytokine synthesis by human monocytes: an autoregulatory function of IL-10 produced by monocytes. J Exp Med 1991; 174: 1209–1220.PubMedCrossRefGoogle Scholar
  112. 111.
    Florentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A. IL-10 inhibits cytokine production by activated macrophages. J Immunol 1991; 147: 3815–3822.Google Scholar
  113. 112.
    Bogdan C, Vodovotz Y, Nathan C. Macrophage deactivation by interleukin 10. J Exp Med 1991; 174: 1549–1555.PubMedCrossRefGoogle Scholar
  114. 113.
    Frei K, Nadal D, Pfister HW, Fontana A. Listeria meningitis: identification of a cerebrospinal fluid inhibitor of macrophage listericidal function as interleukin-10. J Exp Med 1993; 178: 1255–1261.PubMedCrossRefGoogle Scholar
  115. 114.
    Silva JS, Morrisey PJ, Grabstein KH, Monier KM, Anderson D, Reed S. Interleukin 10 and interferon γ regulation of experimental Trypanosoma cruzi infection. J Exp Med 1992; 175: 169–174.PubMedCrossRefGoogle Scholar
  116. 115.
    Gazzinelli RT, Oswald IP, James SL, Sher A. IL-10 inhibits parasite killing and nitrogen oxide production by IFN-γ- activated macrophages. J Immunol 1992; 148: 1792–1796.PubMedGoogle Scholar
  117. 116.
    Tilney LG, Portnoy DA. Actin filaments and the growth, movement and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 1989; 109: 1597–1608PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Jan A. M. Langermans
    • 1
  • Ralph van Furth
    • 1
  1. 1.Department of Infectious DiseasesUniversity Hospital Leidenthe Netherlands

Personalised recommendations