Skip to main content

Differentiation of Hormogonia and Relationships with Other Biological Processes

  • Chapter

Part of the book series: Advances in Photosynthesis ((AIPH,volume 1))

Summary

Several filamentous heterocystous and non-heterocystous cyanobacteria can differentiate hormogonia that are distinguishable from vegetative trichomes by cell shape and, in some species, by cell motility and the presence of gas vesicles. Numerous environmental factors, including light and nutrients, can stimulate or inhibit hormogonium differentiation. In contrast to heterocysts, hormogonia are a transient cell form; they regenerate vegetative trichomes after a few rounds of cell division. In symbiotic associations, hormogonia are the infective units. A factor synthesized by the plant partner could be responsible for the stimulation of the hormogonium differentiation and could thus enhance the establishment of the symbiosis.

Some strains belonging to the genera Nostoc, Tolypothrix and Calothrix display a complex developmental cell cycle that includes both the differentiation of gas-vacuolated hormogonia, heterocyst differentiation and complementary chromatic adaptation. In Calothrix sp. strains PCC 7601 and PCC 7504, these three types of adaptation depend on two different photoreceptor systems. The control of both hormogonium and heterocyst differentiation depends on the photosynthetic electron transport chain. Hormogonium differentiation is likely to be induced by a net oxidation of the plastoquinone pool, while heterocyst differentiation is stimulated by its net reduction. In contrast, complementary chromatic adaptation appears to be controlled by a photoreversible pigment, but this photoreceptor has not yet been characterized. Upon transfer from a nitrate- to an ammonium-containing medium, glutamine synthetase activity decreases by approximately 50%; synthesis of phycoerythrin decreases, while that of phycocyanin increases; methionine sulfoximine, an inhibitor of glutamine synthetase, prevents hormogonium differentiation and has an opposite effect on heterocyst differentiation. Based on these results, the cyanobacterial P11 protein, the counterpart of the regulatory protein from enteric bacteria that is involved in the control of both glutamine synthetase synthesis and activity, is proposed to play a role in the coordination of hormogonium and heterocyst differentiation, and complementary chromatic adaptation. These adaptation mechanisms most probably occur through cascades of phosphorylation/dephosphorylation of effectors and the interplay of specific sigma factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DG (1992) Multicellularity in cyanobacteria. In: Mohan S, Dow C and Cole JA, (eds) Prokaryotic Structure and Function: A New Perspective, pp 341-384. Cambridge University Press.

    Google Scholar 

  • Armstrong RE, Hayes PK and Walsby AE (1983) Gas vacuole formation in hormogonia of Nostoc muscorum. J Gen Microbiol 128: 263–270.

    Google Scholar 

  • Balkwill DL, Nierzwicki-Bauer SA and Stevens SE Jr (1984) Modes of cell division and branch formation in the morphogenesis of the cyanobacterium Mastigocladus laminosus. J Gen Microbiol 130: 2079–2088.

    Google Scholar 

  • Bergman B, Johansson C and Söderbäck E (1992) Transley Review No. 42 — The Nostoc-Gunnera symbiosis. New Phytol 122: 379–400.

    Article  Google Scholar 

  • Bonnett HT and Silvester WB (1981) Specificity in the Gunnera-Nostoc endosymbiosis. New Phytol 89: 121–128.

    Article  CAS  Google Scholar 

  • Brahamsha B and Haselkorn R (1991) Isolation and characterization of the gene encoding the principal sigma factor of the vegetative cell RNA polymerase from the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 173: 2442–2450.

    PubMed  CAS  Google Scholar 

  • Brahamsha B and Haselkorn R (1992) Identification of multiple RNA polymerase sigma factor homologs in the cyanobacterium Anabaena sp. strain PCC 7120: Cloning, expression, and inactivation of the sigB and sigC genes. J Bacteriol 174: 7273–7282.

    PubMed  CAS  Google Scholar 

  • Braun-Howland EB and Nierzwicki-Bauer SA (1990) Azolla-Anabaena symbiosis: Biochemistry, ultrastructure, and molecular biology. In: Rai AN (ed) Handbook of Symbiotic Cyanobacteria, pp 65–117. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Campbell EL and Meeks JC (1989) Characteristics of hormogonia formation by symbiotic Nostoc spp. in response to the presence of Anthoceros punctatus or its extracellular products. Appl Environ Microbiol 55: 125–131.

    PubMed  CAS  Google Scholar 

  • Campbell D, Houmard J and Tandeau de Marsac N (1993) Electron transport regulates cellular differentiation in cyanobacteria. Plant Cell 5: 451–463.

    PubMed  CAS  Google Scholar 

  • Castenholz RW and Waterbury JB (1989) Oxygenic photosynthetic bacteria. Group I. Cyanobacteria. Preface. In: Staley JT, Bryant MP, Pfenning N and Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, pp 1710–1727. Williams and Wilkins, Baltimore MD.

    Google Scholar 

  • Chiang GG, Schaefer MR and Grossman AR (1992) Complementation of a red-light-indifferent cyanobacterial mutant. Proc Natl Acad Sci USA 89: 9415–9419.

    Article  PubMed  CAS  Google Scholar 

  • Csiszàr K, Houmard J, Damerval T and Tandeau de Marsac N (1987) Transcriptional analysis of the cyanobacterial gvpABC operon in differentiated cells: Occurrence of an antisense RNA complementary to three overlapping transcripts. Gene 60: 29–37.

    Article  PubMed  Google Scholar 

  • Damerval T, Houmard J, Guglielmi G, Csiszàr K and Tandeau de Marsac N (1987) A developmentally regulated gvpABC operon is involved in the formation of gas vesicles in the cyanobacterium Calothrix 7601. Gene 54: 83–92.

    Article  PubMed  CAS  Google Scholar 

  • Damerval T, Castets A-M, Guglielmi G, Houmard J and Tandeau de Marsac N (1989) Occurrence and distribution of gas vesicle genes among cyanobacteria. J Bacteriol 171: 1445–1452.

    PubMed  CAS  Google Scholar 

  • Damerval T, Guglielmi G, Houmard J and Tandeau de Marsac N (1991) Hormogonium differentiation in the cyanobacterium Calothrix: A photoregulated developmental process. Plant Cell 3: 191–201.

    PubMed  Google Scholar 

  • Dick H and Stewart WDP (1980) The occurrence of fimbriae on a N2-fixing cyanobacterium which occurs in lichen symbiosis. Arch Microbiol 124: 107–109.

    Article  Google Scholar 

  • Douglas D, Peat A, Whitton BA and Wood P (1986) Influence of iron status on structure of the cyanobacterium (blue-green alga) Calothrix parietina. Cytobios 47: 155–165.

    CAS  Google Scholar 

  • Elmorjani K, Liotenberg S, Houmard J and Tandeau de Marsac N (1992) Molecular characterization of the gene encoding glutamine synthetase in the cyanobacterium Calothrix sp. PCC 7601. Biochem Biophys Res Comm 189: 1296–1302.

    Article  PubMed  CAS  Google Scholar 

  • Enderlin CS and Meeks JC (1983) Pure culture and reconstitution of the Anthoceros-Nostoc symbiotic association. Planta 158: 157–165.

    Article  CAS  Google Scholar 

  • Evans EH, Foulds I and Carr NG (1976) Environmental conditions and morphological variation in the blue-green alga Chlorogloea fritschii. J Gen Microbiol 92: 147–155.

    Article  Google Scholar 

  • Fattom A and Shilo M (1984) Hydrophobicity as an adhesion mechanism of benthic cyanobacteria. Appl Environ Microbiol 47: 135–143.

    PubMed  CAS  Google Scholar 

  • Forchhammer K and Tandeau de Marsac N (1994) The P11 protein in the cyanoobacterium Synechococcus sp {train PCC 7942 is modified by serine phosphorylation and signals the cellular N-states. J Bacteriol 176: 84–91.

    PubMed  CAS  Google Scholar 

  • Ginsburg R and Lazaroff N (1973) Ultrastructural development of Nostoc muscorum A. J Gen Microbiol 75: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Grossman AR (1990) Chromatic adaptation and the events involved in phycobilisome biosynthesis. Plant Cell Environ 13: 651–666.

    Article  CAS  Google Scholar 

  • Grossman AR, Lemaux PG, Conley PB, Bruns BU and Anderson LK (1988) Characterization of phycobiliprotein and linker polypeptide genes in Fremyella diplosiphon and their regulated expression during complementary chromatic adaptation. Photosynth Res 17: 23–56.

    Article  CAS  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG and Collier JL (1993) Environmental effects on the light-harvesting complex of cyanobacteria. J Bacteriol 175: 575–582.

    PubMed  CAS  Google Scholar 

  • Guglielmi G and Cohen-Bazire G (1982a) Etude comparée de la structure et de la distribution des filaments extracellulaires ou fimbriae chez quelques cyanobactéries. Protistologica 18: 167–177.

    Google Scholar 

  • Guglielmi G and Cohen-Bazire G (1982b) Structure et distribution des pores et des perforations de l’enveloppe de peptidoglycane chez quelques cyanobactéries. Protistologica 18: 151–165.

    Google Scholar 

  • Herdman M and Rippka R (1988) Cellular differentiation: Hormogonia and baeocytes. Meth Enzymol 167: 232–242 and 851-853 (Addendum).

    Article  Google Scholar 

  • Hernandez-Muniz W and Stevens SE Jr (1987) Characterization of the motile hormogonia of Mastigocladus laminosus. J Bacteriol 169: 218–223.

    PubMed  CAS  Google Scholar 

  • Islam MR and Whitton BA (1992) Phosphorus content and phosphatase activity of the deepwater rice-field cyanobacterium (blue-green alga) Calothrix D764. Microbios 69: 7–16.

    CAS  Google Scholar 

  • Johansson C and Bergman B (1992) Early events during the establishment of the Gunnera/Nostoc symbiosis. Planta 188: 403–413.

    Article  Google Scholar 

  • Joseph CM and Meeks JC (1987) Regulation of expression of glutamine synthetase in a symbiotic Nostoc strain associated with Anthoceros punctatus. J Bacteriol 169: 2471–2475.

    PubMed  CAS  Google Scholar 

  • Kelly HA (1991) Use of Chlorella as a test system for understanding the mode of action of a chemical hybridising agent. J Appl Phycol 3: 147–151.

    Article  Google Scholar 

  • Lachance M-A (1981) Genetic relatedness of heterocystous cyanobacteria by deoxyribonucleic acid-deoxyribonucleic acid reassociation. Int J Syst Bacteriol. 31: 139–147.

    Article  Google Scholar 

  • Lazaroff N (1966) Photoinduction and photoreversal of the Nostocacean developmental cycle. J Phycol 2: 7–17.

    Article  Google Scholar 

  • Lazaroff N (1972) Experimental control of Nostocacean development. In: Desikachary TV (ed) First International Symposium on Taxonomy and Biology of Blue-Green Algae, pp 521–548. University of Madras, India.

    Google Scholar 

  • Lazaroff N (1973) Photomorphogenesis and nostocacean development. In: eiCarr NG and Whitton BA (eds) The Biology of Blue-Green Algae, pp 279–319. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Lazaroff N and Schiff J (1962) Action spectrum for developmental photo-induction of the blue-green alga Nostoc muscorum. Science 137: 603–604.

    Article  PubMed  CAS  Google Scholar 

  • Lazaroff N and Vishniac W (1961) The effect of light on the developmental cycle of Nostoc muscorum, a filamentous blue-green alga. J Gen Microbiol 25: 365–374.

    Article  PubMed  CAS  Google Scholar 

  • Lazaroff N and Vishniac W (1962) The participation of filament anastomosis in the developmental cycle of Nostoc muscorum, a blue-green alga. J Gen Microbiol 28: 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Lazaroff N and Vishniac W (1964) The relationship of cellular differentiation to colonial morphogenesis of the blue-green alga Nostoc muscorum A. J Gen Microbiol 35: 447–457.

    Article  PubMed  CAS  Google Scholar 

  • Lee KY, Joseph CM and Meeks JC (1988) Glutamine synthetase specific activity and protein concentration in symbiotic Anabaena associated with Azolla caroliniana. Antonie van Leeuwenhoek 54: 345–355.

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Scappino L and Haselkorn R (1992) The patA gene product, which contains a region similar to CheY of Escherichia coli, controls heterocyst pattern formation in the cyanobacterium Anabaena 7120. Proc Natl Acad Sci USA 89: 5655–5659.

    Article  PubMed  CAS  Google Scholar 

  • Lindblad P and Bergman B (1986) Glutamine synthetase: Activity and localization in cyanobacteria of the cycads Cycas revoluta and Zamia skinneri. Planta 169: 1–7.

    Article  CAS  Google Scholar 

  • Lindblad P and Bergman B (1990) The cycad-cyanobacterial symbiosis. In: Rai AN (ed) Handbook of Symbiotic Cyanobacteria, pp 137–159. CRC Press, Boca Raton, IL.

    Google Scholar 

  • Magasanik B (1993) The regulation of nitrogen utilization in enteric bacteria. J Cell Biochem 51: 34–40.

    Article  PubMed  CAS  Google Scholar 

  • Mahasneh IA, Grainger SLJ and Whitton BA (1990) Influence of salinity on hair formation and phosphatase activities of the blue-green alga (cyanobacterium) Calothrix viguieri D253. Br Phycol J 25: 25–32.

    Article  Google Scholar 

  • Meeks JC (1988) Symbiotic associations. Meth Enzymol 167: 113–121.

    Article  Google Scholar 

  • Meeks JC (1990) Cyanobacterial-bryophyte associations. In: Rai AN (ed) CRC Handbook of Symbiotic Cyanobacteria, pp 43–63. CRC Press, Boca Raton.

    Google Scholar 

  • Mérida A, Leurentop L, Candau P and Florencio FJ (1990) Purification and properties of glutamine synthetases from the cyanobacteria Synechocystis sp. strain PCC 6803 and Calothrix sp. strain PCC 7601. J Bacteriol 172: 4732–4735.

    PubMed  Google Scholar 

  • Munoz Aguilar JM, Ashby AM, Richards AJM, Loake GJ, Watson MD and Shaw CH (1988) Chemotaxis of Rhizobium leguminosarum biovar phaseoli towards flavonoid inducers of the symbiotic nodulation genes. J Gen Microbiol 134: 2741–2746.

    CAS  Google Scholar 

  • Nierzwicki SA, Maratea D, Balkwill DL, Hardie LP, Mehta VB and Stevens SE Jr (1982) Ultrastructure of the cyanobacterium, Mastigocladus laminosus. Arch Microbiol 133: 11–19.

    Article  Google Scholar 

  • Nierzwicki-Bauer SA, Balkwill DL and Stevens SE Jr (1984a) Heterocyst differentiation in the cyanobacterium Mastigocladus laminosus. J Bacteriol 157: 514–525.

    PubMed  CAS  Google Scholar 

  • Nierzwicki-Bauer SA, Balkwill DL and Stevens SE Jr (1984b) Morphology and ultrastructure of the cyanobacterium Mastigocladus laminosus growing under nitrogen-fixing conditions. Arch Microbiol 137: 97–103.

    Article  Google Scholar 

  • Orr J and Haselkorn R (1982) Regulation of glutamine synthetase activity and synthesis in free-living and symbiotic Anabaena spp. J Bacteriol 152: 626–635.

    PubMed  CAS  Google Scholar 

  • Peters GA and Meeks JC (1989) The Azolla-Anabaena symbiosis: Basic biology. Annu Rev Plant Physiol Plant Mol Biol 40: 193–210.

    Article  Google Scholar 

  • Rai AN, Borthakur M, Singh S and Bergman B (1989) Anthoceros-Nostoc symbiosis: Immunoelectronmicroscopic localization of nitrogenase, glutamine synthetase, phycoerythrin and ribulose-l,5-bisphosphate carboxylase/oxygenase in the cyanobiont and the cultured (free-living) isolate Nostoc 7801. J Gen Microbiol 135: 385–395.

    CAS  Google Scholar 

  • Rai AN (1990) Cyanobacterial-fungal symbioses: The cyanolichens. In: Rai AN (ed) Handbook of Symbiotic Cyanobacteria, pp 9–41. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Reitzer LJ and Magasanik B (1987) Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine, and D-alanine. In: Ingraham JL, Low KB, Magasanik B, Schaechter M and Umbarger HE, (eds) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology, pp 302–320. American Society for Microbiology, Washington DC.

    Google Scholar 

  • Rippka R (1988) Recognition and identification of cyanobacteria. Meth Enzymol 167: 28–67.

    Article  Google Scholar 

  • Rippka R and Herdman M (1985) Division patterns and cellular differentiation in cyanobacteria. Ann Microbiol (Inst Pasteur) 136A: 33–39.

    Article  CAS  Google Scholar 

  • Rippka R and Herdman M (1992) Pasteur Culture Collection of Cyanobacterial Strains in Axenic Culture. In: Catalogue and Taxonomic Handbook, pp 1–103. Institut Pasteur, Paris.

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M and Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61.

    Article  Google Scholar 

  • Robinson BL and Miller JH (1970) Photomorphogenesis in the blue-green alga Nostoc commune 584. Physiol Plant 23: 461–472.

    Article  Google Scholar 

  • Sobczyk A, Schyns G, Tandeau de Marsac N and Houmard J (1993) Transduction of the light signal during complementary chromatic adaptation in the cyanobacterium Calothrix sp. PCC 7601: DNA-binding proteins and modulation by phosphorylation. EMBO J 12: 997–1004.

    PubMed  CAS  Google Scholar 

  • Stewart WDP, Rowell P and Rai AN (1980) Symbiotic nitrogen-fixing cyanobacteria. In: Stewart WDP and Gallon JB (eds) Nitrogen Fixation, pp 239–277. Academic Press London.

    Google Scholar 

  • Stock JB, Ninfa AJ and Stock AM. (1989) Protein phosphorylation and regulation of adaptative responses in bacteria. Microbiol Rev 53: 450–490.

    PubMed  CAS  Google Scholar 

  • Stock JB, Stock AM and Mottonen JM (1990) Signal transduction in bacteria. Nature 344: 395–400.

    Article  PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N (1991) Chromatic adaptation by cyanobacteria. In: Bogorad L and Vasil IK (eds) Cell Culture and Somatic Cell Genetics of Plants, Vol 7B, pp 417–446. Academic Press Inc., New York.

    Google Scholar 

  • Tandeau de Marsac N and Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: New steps towards molecular mechanisms. FEMS Microbiol Rev 104: 119–190.

    Article  CAS  Google Scholar 

  • Tandeau de Marsac N, Mazel D, Bryant DA and Houmard J (1985) Molecular cloning and nucleotide sequence of a developmentally regulated gene from the cyanobacterium Calothrix PCC 7601: A gas vesicle protein gene. Nucl Acids Res 13: 7223–7236.

    Article  PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N, Mazel D, Damerval T, Guglielmi G, Capuano V and Houmard J (1988) Photoregulation of gene expression in the filamentous cyanobacterium Calothrix sp. PCC 7601: Light-harvesting complexes and cell differentiation. Photosynth Res 18: 99–132.

    Article  Google Scholar 

  • Tsinoremas NF, Castets A-M, Harrison MA, Allen JF and Tandeau de Marsac N (1991) Photosynthetic electron transport controls nitrogen assimilation in cyanobacteria by means of post-translational modification of the glnB gene product. Proc Natl Acad Sci USA 88: 4565–4569.

    Article  PubMed  CAS  Google Scholar 

  • Thuret G (1844) Note sur le mode de reproduction du Nostoc verrucosum. Ann Sci Nat Bot Biol Vég 2: 319–323.

    Google Scholar 

  • Vaara T, Ranta H, Lounatmaa K and Korhonen TK (1984) Isolation and characterization of pili (fimbriae) from Synechocystis CB3. FEMS Microbiol Lett 21: 329–334.

    Article  CAS  Google Scholar 

  • Walsby AE (1972) Structure and function of gas vacuoles. Bacteriol Rev 36: 1–32.

    PubMed  CAS  Google Scholar 

  • Walsby AE (1981a) Cyanobacteria: Planktonik gas-vacuolate forms. In: Starr MP, Stolp H, Trüper HG, Balows A and Schlegel HG(eds) The Prokaryotes, pp 224–235. Springer-Verlag, Berlin.

    Google Scholar 

  • Walsby AE (1981b) Gas-vacuolate bacteria (apart from cyanobacteria). In: Starr M.P., Stolp H, Trüper HG, Balows A and Schlegel HG (eds) The Prokaryotes, pp 441–447. Springer-Verlag, Berlin.

    Google Scholar 

  • Walsby AE (1987) Mechanisms of buoyancy regulation by planktonic cyanobacteria with gas vesicles. In: Fay P and Van Baalen C (eds) The Cyanobacteria, pp 377–392. Elsevier, Amsterdam.

    Google Scholar 

  • Walsby AE and Hayes PK (1989) Gas vesicle proteins. Biochem J 264: 313–322.

    PubMed  CAS  Google Scholar 

  • Whitton BA (1992) Diversity, Ecology, and Taxonomy of the Cyanobacteria. In: Mann NH and Carr NG (eds) Photosynthetic Prokaryotes, pp 1–51. Plenum Press, New York.

    Chapter  Google Scholar 

  • Wolk CP (1982) Heterocysts. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, pp 359–386. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Wolk CP (1991) Genetic analysis of cyanobacterial development. Curr Opin Genet Develop 1: 336–341.

    Article  CAS  Google Scholar 

  • Wood P, Peat A and Whitton BA (1986) Influence of phosphorus status on fine structure of the cyanobacterium (blue-green alga) Calothrix parietina. Cytobios 47: 89–99.

    CAS  Google Scholar 

  • Wu GL, Zhong ZP, Bai KZ, Wang FZ and Cui C (1982) The effects of light quality on the growth and development of Anabaena azollae. Acta Bot. Sin. 24: 46–53.

    Google Scholar 

  • Wyman M and Fay P (1987) Acclimation to the natural light climate. In: Fay P. and Van Baalen C. (eds) The Cyanobacteria, pp 347–376. Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Marsac, N.T. (1994). Differentiation of Hormogonia and Relationships with Other Biological Processes. In: Bryant, D.A. (eds) The Molecular Biology of Cyanobacteria. Advances in Photosynthesis, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0227-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0227-8_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3273-2

  • Online ISBN: 978-94-011-0227-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics