Skip to main content

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 64))

Abstract

Soil fauna generally have limited abilities to adapt to soil acidity. In tropical soils, invertebrates tolerate lower pH than in temperate areas and abundant and active populations may exist in soils with pH of 3.8 to 4.0. Beyond determined thresholds which may largely differ among broad taxonomic units and species, communities tend to concentrate in sites where pH conditions are more favourable, e.g. in the leaf litter or in the rhizosphere rather than in the “bulk” soil. In acid soils, the abundance of large invertebrates living either in the soil (i.e. endogeic earthworms and humivorous termites), or in burrows opening at the soil surface and in surface or subterranean nests (i.e. anecic termites and earthworms) tends to decrease. Litter-feeding arthropods and microfauna associated with the litter and rhizosphere (i.e. nematodes and protozoa) become predominant. pH is often higher in the gut of soil invertebrates than in the bulk soil; this microenvironment may be a favourable microsite for chemical reactions which are inhibited by acidity. Liming of acid soils often results in dramatic shifts in the composition and abundance of soil fauna communities. The overall biological activity is significantly increased as large endogeic and anecic invertebrates build significant populations which compete favourably with less active arthropods of the litter system. The application of high-quality leaf litter has similar effects and the decrease of the overall activity in acid soils may result from the low quality of feeding resources available rather than acidity itself. Emphasis is set on management of organic matter as a mean to sustain high levels of soil faunal activity in acid soils, and hence, increase the productivity and sustainability of cropping systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbadie L and Lepage M 1989 The role of subterranean fungus comb chambers (Isoptera, Macrotermitinae) in soil nitrogen cycling in a preforest savanna (Côte d’Ivoire). Soil Biol. Biochem. 21, 1067–1071.

    Article  CAS  Google Scholar 

  • Anderson J M and Wood T G 1984 Mound composition and soil modification by two soil-feeding termites (Termitinae, Termiti-dae) in a riparian Nigerian forest. Pedobiologia 26, 77–82.

    Google Scholar 

  • Barois I 1987 Interactions entre les Vers de Terre (Oligochaeta) tropicaux géophages et la microflore pour l’exploitation de la matière organique du sol. Publication du Laboratoire de Zoologie de l’ENS, 12, Paris.

    Google Scholar 

  • Barois I and Lavelle P 1986 Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta). Soil Biol. Biochem. 18, 539–541.

    Article  Google Scholar 

  • Barois I, Verdier B, Kaiser P, Mariotti A, Rangel P and Lavelle P 1987 Influence of the tropical earthworm Pontoscolex corethrurus (Glossoscolecid) on the fixation and mineralization of nitrogen. In On Earthworms. Ed. P Omodeo and A M Bonvicini. pp 151–158. Mucchi, Bologna, Italy.

    Google Scholar 

  • Blanchart E 1992 Restoration by earthworms (Megascolecidae) of the macroaggregate structure of a destructured savanna soil under field conditions. Soil Biol. Biochem. 24, 1587–1594.

    Article  Google Scholar 

  • Blanchart E, Lavelle P and Spain A 1990 Effects of biomass and size of Millsonia anomala (Oligochaeta, Acanthodrilidae) on particle aggregation in a tropical soil in the presence of Panicum maximum. Biol. Fertil. Soils 10, 113–120.

    Google Scholar 

  • Bouché M B 1972 Lombriciens de France. Ecologie et Systématique. Ann. Zool. Ecol. Anim. 12, 1 671.

    Google Scholar 

  • Breznak J A 1984 Biochemical aspects of symbiosis between termites and their intestinal microbiota. In Invertebrate-microbial interactions. Eds. J M Anderson, A D M Rayner and D W H Walton. pp 173–204. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Buse A 1990 Influence of earthworms on nitrogen fluxes and plant growth in cores taken from variously managed upland pastures. Soil Biol. Biochem. 22, 775–780.

    Article  CAS  Google Scholar 

  • Casenave A and Valentin C 1989 Les états de surface de la zone Sahélienne. Influence sur l’infiltration. ORSTOM, Paris.

    Google Scholar 

  • Clarholm M 1985 Interactions of bacteria, protozoa and plant leading to mineralization of soil nitrogen. Soil Biol. Biochem. 17, 181–187.

    Article  CAS  Google Scholar 

  • Coleman D C 1982 The impacts of acid deposition on soil biota and C cycling. Environ. Exp. Bot. 23, 225–233.

    Article  Google Scholar 

  • Dash M C, Senapati B K and Mishra C C 1980 Nematode feeding by tropical earthworms. Oikos 34, 322–328.

    Article  Google Scholar 

  • Decaens T, Lavelle P, Jimenez Jaen J J, Escobar G and Rippstein G 1995 Impact of land management on soil macrofauna in the Oriental Llanos of Colombia. Eur. J. Soil Biol. (In press).

    Google Scholar 

  • Eschenbrenner V 1986 Contribution des termites à la macroagrégation des sols tropicaux. Cah. ORSTOM, Sér. Pédol. 22, 397–408.

    Google Scholar 

  • Fragoso C 1993 Les vers de terre de l’est et du sud-est mexicains. Thèse Doctorat, Paris VI, France.

    Google Scholar 

  • Garnier-Sillam E 1989 The pedological role of fungus-growing termites (Termitidae: Macrotermitinae) in tropical environments, with special reference to Macrotermes muelleri. Sociobiol. 15, 181–196.

    Google Scholar 

  • Garnier-Sillam E, Braudeau E and Tessier D 1991 Rôle des termites sur le spectre poral des sols forestiers tropicaux. Cas de Thora-cotermes macrothorax Sjöstedt (Termitinae) et de Macrotermes miilleri (Sjöstedt) (Macrotermitinae). Inc. Soc. 38, 397–412.

    Article  Google Scholar 

  • Garnier-Sillam E and Renoux J 1989 Les composés humiques des termitières de Thoracotermes macrothorax (humivore) et de Macrotermes mülleri (champignonniste). Soil Biol. Biochem. 21, 499505.

    Article  Google Scholar 

  • Garnier-Sillam E, Toutain F, Villemin G and Renoux J 1988 Transformation de la matière organique végétale sous l’action du termite Macrotermes mülleri (Sjöstedt) et de son champignon symbiotique. Can. J. Microbiol. 34, 1247–1255.

    Article  CAS  Google Scholar 

  • Garnier-Sillam E, Villemin G, Toutain F and Renoux J 1987 Contribution à l’étude du rôle des termites dans l’humification des sols forestiers tropicaux. In Micromorphologie des Sols. Eds. N Fedoroff, L M Bresson and M A Courty. pp 331–335. AFES, Paris, France.

    Google Scholar 

  • Gillman G P 1984 Using variable charge characteristics to understand the exchangeable cation status of oxic soils. Aust. J. Soil Res. 22, 71–80.

    Article  CAS  Google Scholar 

  • Gourbière F 1982 Pourriture blanche de la litière d’Abies alba Mill. I. — Evolution de la litière sous l’action des basidiomycètes du genre Collybia. Rev. Ecol. Biol. Sol 19, 163–175.

    Google Scholar 

  • Gourbière F 1983 Pourriture blanche de la litière d’Abies alba Mill. II. — Répartition spatio-temporelle et activité annuelle des basidiomycètes du genre Collybia. Rev. Ecol. Biol. Sol 20, 461–474.

    Google Scholar 

  • Haimi J, Huhta V and Boucelham M 1992 Growth increase of birch seedlings under the influence of earthworms. A laboratory study. Soil Biol. Biochem. 24, 1525–1528.

    Article  Google Scholar 

  • Huhta V 1979 Effects of liming and deciduous litter on earthworm (Lumbricidae) populations of a spruce forest, with an inoculation experiment on Allolobophora caliginosa. Pedobiologia 19, 340–345.

    CAS  Google Scholar 

  • Huhta V, Hyvönen R, Koskenniemi A, Vilkamaa P, Kaasalainen P and Sulander M 1986 Response of soil fauna to fertilization and manipulation of pH in coniferous forests. Acta For. Fenn. 195, 1–30.

    Google Scholar 

  • Langmaid K K 1964 Some effects of earthworm invasion in virgin podzols. Can. J. Soil Sci. 44, 34–37.

    Article  Google Scholar 

  • Lavelle P, Blanchart E, Martin A, Martin S, Barois I, Toutain F, Spain A and Schaefer R 1993 A hierarchical model for decomposition in terrestrial ecosystems. Application to soils in the humid tropics. Biotropica 25, 130–150.

    Article  Google Scholar 

  • Lavelle P, Gilot C, Fragoso C and Pashanasi B 1994 Soil fauna and sustainable land use in the humid tropics. In Soil Resilience and Sustainable Land Use. Eds. I Szabolcs and D Greenland. pp 291–308. CAB International, Wallingford, UK.

    Google Scholar 

  • Lavelle P and Martin A 1992 Small-scale and large-scale effects of endogeic earthworms on dynamics of organic matter of moist savanna soil. Soil Biol. Biochem. 24, 1491–1498.

    Article  Google Scholar 

  • Lavelle P, Melendez G, Pashanasi B and Schaefer R 1992a Nitrogen mineralization and reorganization in casts of the geophagous tropical earthworm Pontoscolex corethurus (Glossoscolecidae). Biol. Fertil. Soils 14, 49–53.

    Article  CAS  Google Scholar 

  • Lavelle P and Pashanasi B 1989 Soil macrofauna and land management in Peruvian Amazonia (Yurimaguas, Loreto). Pedobiologia 33, 283–291.

    Google Scholar 

  • Lavelle P and Spain A V 1995 Soil Ecology. Chapman and Hall, London, UK.

    Google Scholar 

  • Lavelle P, Spain A V, Blanchart E, Martin A and Martin S 1992b The impact of soil fauna on the properties of soils in the humid tropics. In Myths and Science of Soils of the Tropics. Eds. P Sanchez and R Lal. pp 157–185. Soil Science Society of America Special Publication, Madison, Wisconsin, USA.

    Google Scholar 

  • Lee K E and Wood T G 1971a Physical and chemical effects on soils of some Australian termites, and their pedological significance. Pedobiologia 11, 376–409.

    Google Scholar 

  • Lee K E and Wood T G 1971b Termites and Soils. London, Academic Press, UK. 321 p.

    Google Scholar 

  • Lopez-Hernandez D, Fardeau J C, Nino M, Nannipieri P and Chacon P 1989 Phosphorus accumulation in savanna termite mounds in Venezuela. J. Soil Sci. 40, 635–640.

    Article  CAS  Google Scholar 

  • Lopez-Hernandez D, Fardeau J C and Lavelle P 1993 Phosphorus transformations in two P-sorption contrasting tropical soils during transit through Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta). Soil Biol. Biochem. 25, 789–792.

    Article  CAS  Google Scholar 

  • Ma W C, Brussaard L and De Ridder J A 1990 Long-term effects of nitrogenous fertilizers on grassland Earthworms (Oligochaeta: Lumbricidae): Their relation to soil acidification. Agric. Ecosys. Environ. 30, 71–80.

    Article  Google Scholar 

  • Mackey A D, Syers J K, Springett J A and Gregg P E H 1982 Plant availability of phosporus in superphosphate and a phosphate rock as influenced by earthworms. Soil Biol. Biochem. 14, 281–287.

    Article  Google Scholar 

  • Martin A 1988 Etude du système de digestion mutualiste du ver de terre géophage Dichogaster terrae-nigrae (Megascolescidae). Ann. Univ. Abidjan XX, 23–30.

    Google Scholar 

  • Martin A 1991 Short-term and long-term effect of the endogeic earthworm Millsonia anomala (Omodeo) (Megascolecid, Oligochta) of a tropical savanna, on soil organic matter. Biol. Fertil. Soil 11, 234–238.

    Article  Google Scholar 

  • Martin A, Cortez J, Barois I and Lavelle P 1987 Les mucus intestinaux de ver de terre, moteur de leurs interactions avec la microflore. Rev. Ecol. Biol. Sol 24, 549–558.

    Google Scholar 

  • Martin A, Mariotti A, Balesdent J, Lavelle P and Vuattoux R 1990 Estimates of the organic matter turnover rate in a savanna soil by the 13C natural abundance. Soil Biol. Biochem. 22, 517–523.

    Article  Google Scholar 

  • Pashanasi B, Melendez G, Szott L and Lavelle P 1992 Effect of inoculation with the endogeic earthworm Pontoscolex corethrurus (Glossoscolecidae) on N availability, soil microbial biomass and the growth of three tropical fruit tree seedlings in a pot experiment. Soil Biol. Biochem. 24, 1655–1660.

    Article  Google Scholar 

  • Persson T 1988 Effects of liming on the soil fauna in forest — a literature review. Statens Naturvardsverk Report No. 3418.

    Google Scholar 

  • Petersen H and Luxton M 1982 A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 287–388.

    Google Scholar 

  • Rose C J and Wood A W 1980 Some environmental factors affecting earthworm populations and sweet potato production in the Tari Basin, Papua New Guinea highlands. Papua New Guinea Agric. J. 31, 1–13.

    Google Scholar 

  • Rouland C, Mora P and Renoux J 1988 Essai d’interprétation de la symbiose digestive chez Macrotermes mülleri (Termitidae, Macrotermitinae). Act. Coll. Insect. Soc. 4, 111–118.

    Google Scholar 

  • Sharpley A N and Syers J K 1976 Potential role of earthworm casts for the phosphorus enrichment of run-off waters. Soil Biol. Biochem. 8, 341–346.

    Article  CAS  Google Scholar 

  • Spain A V, Lavelle P and Mariotti A 1992 Stimulation of plant growth by tropical earthworms. Soil Biol. Biochem. 24, 1629–1634.

    Article  Google Scholar 

  • Spain A V and Okello-Oloya T 1985 Variation in the growth of two tropical pasture plants on soils associated with the termitaria of Amitermes laurensis (Isoptera: Termitinae). In Grassland Invertebrate Ecology. pp 141–145. Caxton Press, Lincoln College, Canterbury, NZ.

    Google Scholar 

  • Spiers G A, Gagnon D, Nason G E, Packee E C and Lousier J D 1986 Effects and importance of indigenous earthworms on decomposition and nutrient cycling in coastal forest ecosystems. Can. J. For. Res. 16, 983–989.

    Article  Google Scholar 

  • Springett J A 1985 Effect of introducing Allolobophora longa Ude on root distribution and some soil properties in New Zealand pastures. In Ecological Interactions in Soil; Plants, Microbes and Animals. Eds. D Atkinson, A H Fitter, D J Read and M B Usher. pp 399–405. Blackwell Scientific Publications, Oxford, UK.

    Google Scholar 

  • Stockdill S M J 1959 Earthworms improve pasture growth. N.Z.J. Agric. 98, 227–233.

    Google Scholar 

  • Stockdill S M J 1982 Effects of introduced earthworms on the productivity of New Zealand pastures. Pedobiologia, 24, 29–35.

    Google Scholar 

  • Stork N E and Eggleton P 1992 Invertebrates as determinants and indicators of soil quality. Am. J. Altern. Agric. 7, 38–55.

    Article  Google Scholar 

  • Swift M J, Heal O W and Anderson J M 1979 Decomposition in terrestrial ecosystems. Blackwell Scientific, Oxford, UK. 372 p.

    Google Scholar 

  • Toutain F 1985 Activité biologique des sols, modalités et lithodépendance. Biol. Fertil. Soils. 3, 31–38.

    Google Scholar 

  • Tomati U, Grappeli A and Galli E 1988 The hormone-like effect of earthworm casts on plant growm. Biol. Fertil. Soils 5, 288–294.

    Article  CAS  Google Scholar 

  • Trigo D L P 1993 Changes in respiration rate and some physicochem-ical properties of soil during gut transit through Allolobophora molleri (Lumbricidae, Oligochaeta). Biol. Fertil. Soils 15, 185–188.

    Article  Google Scholar 

  • Trofymow J A and Coleman D C 1982 The role of bacterivorous and fungivorous nematodes in cellulose and chitin decomposition. In Nematodes in Soil Ecosystems. Ed. D W Freckman. pp 117–138. University of Texas Press, Austin, USA.

    Google Scholar 

  • Visser S A 1985a Effect of humic acids on numbers and activities of micro-organisms within physiological groups. Org. Geochem. 8, 81–85.

    Article  CAS  Google Scholar 

  • Visser S A 1985b Physiological action of humic substances on microbial cells. Soil Biol. Biochem. 17, 457–462.

    Article  CAS  Google Scholar 

  • Wielemaker W G 1984 Soil formation by termites, a study in the Kisii area, Kenya. Thesis Doctor in de Landbouwetenschappen, Wageningen University, The Netherlands.

    Google Scholar 

  • Yeates G W 1981 Soil nematode populations depressed in the presence of earthworms. Pedobiologia 22, 191–195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. A. Date N. J. Grundon G. E. Rayment M. E. Probert

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lavelle, P., Chauvel, A., Fragoso, C. (1995). Faunal activity in acid soils. In: Date, R.A., Grundon, N.J., Rayment, G.E., Probert, M.E. (eds) Plant-Soil Interactions at Low pH: Principles and Management. Developments in Plant and Soil Sciences, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0221-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0221-6_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4099-0

  • Online ISBN: 978-94-011-0221-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics