Skip to main content

Part of the book series: Mathematical Physics Studies ((MPST,volume 17))

  • 476 Accesses

Abstract

Consider a system of N particles contained in a finite region (vessel) ∧ with volume V - | ∧ |. A state of this system is described by a density matrix p N (t) that satisfies the equation

$$i\frac{{\partial \rho _N^ \wedge }}{{\partial t}} = \left[ {H_N^ \wedge ,\rho _N^ \wedge (t)} \right],\rho _N^ \wedge {(t)_{r = 0}} = \rho _N^ \wedge (0),H_N^ \wedge \equiv {H_N}( \wedge ),$$
((4.1))

with a Hamiltonian

$$H_N^ \wedge = - \sum\limits_{i = 1}^N {\left( {\frac{1}{{2m}}{\Delta _1} + {u^ \wedge }\left( {{x_i}} \right) + \mathop \sum \limits_{i < j = 1}^N \Phi \left( {{x_i} - {x_j}} \right)} \right)} ,$$
((4.2))

where u Λ(x) is an external field which keeps the system in the region ∧ (u (x) = 0 if x ∊ ∧ and u (x) = + ∞ if x ∉ ∧) and (φ(x) is such that the operator H N is selfadjoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizenman, M., Gallavotti, G., Goldstein, Sh., and Lebowitz, J. L. Stability and equilibrium states on infinite classical systems, Comm. Math. Phys., 48,1–14(1976).

    Article  MathSciNet  ADS  Google Scholar 

  2. Albeverio, S. and Høegh-Krohn, R. Mathematical theory of Feynman path integrals, Springer Lect. Notes Math., 523,1–139(1976).

    Article  Google Scholar 

  3. Berezansky, Yu. M. and Kondratyev, Yu. G. Spectral Methods in Infinite-Dimensional Analysis [in Russian], Nauk. Dumka, Kiev (1988).

    Google Scholar 

  4. Bogolyubov, N. N. Selected Papers [in Russian], Vol.2, Naukova Dumka, Kiev (1970), pp.287–493.

    Google Scholar 

  5. Bogolyubov, N. N. and Bogolyubov, N. N. (Jr.) Introduction to Quantum Statistical Mechanics [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  6. Bogolyubov, N. N. and Gurov, K. P. Kinetic equations in quantum mechanics, Zh. Eksp.Teor. Fiz., 17 (7), 614–628 (1947).

    MathSciNet  Google Scholar 

  7. Bogolyubov, N. N. and Gurov, K. P. Measures and Differential Equations in Infinite-Dimensional Spaces [in Russian], Nauka, Moscow (1983); English transl.: Kluwer AP, Dordrecht (1991).

    Google Scholar 

  8. Dunford, N. and Schwartz, J. T. Linear Operators, Interscience, New York-London (1958).

    Google Scholar 

  9. Feynman, R. Statistical Mechanics [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  10. Feynman, R. and Hibbs, A. Quantum Mechanics and Path Integrals [Russian translation], Mir, Moscow (1968).

    Google Scholar 

  11. Gelfand, I. M. and Vilenkin, N. Ya. Some Applications of Harmonic Analysis. Rigged Hilbert Spaces [in Russian], Fizmatgiz, Moscow (1961); English transl.: Academic Press, New York (1964).

    Google Scholar 

  12. Ginibre, J. Some applications of functional integration in statistical mechanics, in: C. de Witt and R. Stora (eds.), Statistical Mechanics and Quantum Field Theory, Gordon and Breach, New York (1971).

    Google Scholar 

  13. Gokhberg, I. C. and Krein, M. G. Introduction to the Theory of Linear Nonselfadjoint Operators [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  14. Gurevich, B. M. and Sukhov, Yu. M. Stationary solutions of the Bogolyubov hierarchy of equations in classical statistical mechanics, Comm. Math. Phys., 49, 69–96 (1976)

    Article  ADS  Google Scholar 

  15. Gurevich, B. M. and Sukhov, Yu. M. Stationary solutions of the Bogolyubov hierarchy of equations in classical statistical mechanics, Comm. Math. Phys.,54, 81–96 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Gurevich, B. M. and Sukhov, Yu. M. Stationary solutions of the Bogolyubov hierarchy of equations in classical statistical mechanics, Comm. Math. Phys.,56, 225–236 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  17. Gurevich, B. M. and Sukhov, Yu. M. Stationary solutions of the Bogolyubov hierarchy of equations in classical statistical mechanics, Comm. Math. Phys.,84, 336–376 (1982).

    Article  ADS  Google Scholar 

  18. Haag, R., Hugenholtz, N., and Winnink, M. On the equilibrium states in quantum statistical mechanics, Comm. Math. Phys., 5, 215 (1967).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Haag, R., Kastler, D., and Trych-Pohlmeyer, E. Stability and equilibrium states, Comm. Math. Phys., 38,173–193 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  20. Maurin, K. Methods of Hilbert Spaces, PWN, Warsaw (1959);English transl.: (1967).

    Google Scholar 

  21. Nelson, E. Feynman integrals and the Schrödinger equations, J. Math. Phys., 5, No. 3, 332–343 (1964).

    Article  ADS  MATH  Google Scholar 

  22. Petrina, D. Ya. On solutions of the Bogolyubov kinetic equations. Quantum statistics, Teor. Mat. Fiz., 13, No. 3, 391–405 (1972).

    Article  MathSciNet  Google Scholar 

  23. Petrina, D. Ya. and Vidybida, A. K. Cauchy problem for the Bogolyubov kinetic equations, Trudy MI AN SSSR, 86, Part 2,370–378 (1975).

    MathSciNet  Google Scholar 

  24. Rasulova, M. Yu. Cauchy problem for the Bogolyubov kinetic equations. Quantum case, Dokl. Akad. Nauk Uzbek. SSR, No. 2, 248–254 (1976).

    Google Scholar 

  25. Reed, M. and Simon, B. Methods of Modern Mathematical Physics, Vol. 1. Functional Analysis, Academic Press, New York-San Francisco-London (1972).

    Google Scholar 

  26. Reed, M. and Simon, B. Methods of Modern Mathematical Physics, Vol. 2. Fourier Analysis. Selfadjointness, Academic Press, New York-San Francisco-London (1975).

    Google Scholar 

  27. Yosida, K. Functional Analysis, Springer-Verlag, Berlin-Heidelberg-New York (1968).

    Google Scholar 

  28. Zagrebnov, V. A. The Trotter-Lie product formula for Gibbs semigroups, J. Math. Phys., 29,888–891(1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Zagrebnov, V. A. Perturbation of Gibbs semigroups, Comm. Math. Phys., 120, 653–664 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Petrina, D.Y. (1995). Evolution of States of Infinite Quantum Systems. In: Mathematical Foundations of Quantum Statistical Mechanics. Mathematical Physics Studies, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0185-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0185-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4083-9

  • Online ISBN: 978-94-011-0185-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics