Skip to main content

Signal Transduction and Endocytosis of Rhizobia in the Host Cells

  • Chapter
Advances in Molecular Genetics of Plant-Microbe Interactions

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 21))

  • 186 Accesses

Abstract

Root nodule organogenesis proceeds through many early morphological responses of the host to rhizobia invasion. These include deformation and curling of root hairs, formation of infection threads, de-differentiation of cortical cells, formation of nodule primodia and endocytosis of rhizobia. Recent advances in molecular techniques have allowed observations of early physiological and biochemical changes of the host accompanying the above morphological changes. This became possible by identification and purification of Nod factors. These factors have provided a new tool for studying nodule initiation, morphogenesis as well as signal recognition [1]. Nod factors are a group of lipo-oligosaccharide molecules that are secreted by rhizobia in response to signals from the host-plant and are active in nanomolar concentrations in inducing nodule-like structures on legume roots. One of the observations on early host responses has demonstrated that Nod factors induce a rapid depolarization of membrane potential in legume root hairs [2]. This depolarization response is specific because preparations from a Nod-rhizobium strain failed to induce this response and roots of non-legume plants did not respond to purified Nod factors. Since signal transduction in mammalian cells often couples with a membrane potential depolarization, these results suggest that the host responds to Nod factors by transducing a signal across the plasma membrane. Intracellular Ca++ levels increase rapidly following application of Nod factors (W. Broughton, personal communication), suggesting possible involvement of Ca++ ions in this process. Recent studies on expression of early nodulin genes using PCR methodology and promoter-reporter system have also provided new insights into early host responses. Expression of Enod5 and Enod12 is induced specifically after application of Nod factors 131. The promoter of Enod12 gene is activated in epidermal cells of the root hair zone by addition of Nod factors in nanomolar concentrations, demonstrating spatial distribution of host response [4]. However, it is not yet clear how Nod signal is transduced and initiates the nodule morphogenesis cascade [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Verma DPS. Signals in root nodule organogenesis and endocytosis of Rhizobium. Plant Cell 1992; 4: 373–382.

    PubMed  CAS  Google Scholar 

  2. Ehrhardt D, Atkinson E, Long S. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 1992; 256: 998–1000.

    Article  PubMed  CAS  Google Scholar 

  3. Horvath B, Heidstra R, Lados M et al. Lipooligosaccharides of Rhizobium induce infection-related early nodulin gene expression in pea root hairs. Plant J 1993; 4: 727–733.

    Article  PubMed  CAS  Google Scholar 

  4. Pichon M, Journet E, Dedieu A, De Billy F, Truchet G, Barker D. Rhizobium meliloti elicits transient expression of the early nodulin gene ENOD12 in the differentiating root epidermis of transgenic alfalfa. Plant Cell 1992; 4: 1199–1211.

    PubMed  CAS  Google Scholar 

  5. Cantley LC, Auger KR, Carpenter C et al. Oncogenes and signal transduction. Cell 1991; 64: 281–302.

    Article  PubMed  CAS  Google Scholar 

  6. Drobak B. The plant phosphoinositide system. Biochem J 1992; 288: 697–712.

    PubMed  CAS  Google Scholar 

  7. Valius M, Kazlauskas A. Phospholipase C-yl and phosphatidylinositol 3-kinase are the downstream mediators of the PDGF receptors mitogenic signal. Cell 1993; 73: 321–334.

    Article  PubMed  CAS  Google Scholar 

  8. Skolnik EY, Magolis B, Mohammadi M et al. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 1991; 65: 83–90.

    Article  PubMed  CAS  Google Scholar 

  9. Hiles ID, Otsu M, Volinia S et al. Phosphatidylinositol 3-kinase: structure and the expression of the 110 kD catalytic subunit. Cell 1992; 70: 419–429.

    Article  PubMed  CAS  Google Scholar 

  10. Wennstrom S, Hawkins P, Cooke F et al. Activation of phospoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Cur Biol 1994; 4: 385–393.

    Article  CAS  Google Scholar 

  11. Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 1993; 260: 88–91.

    Article  PubMed  CAS  Google Scholar 

  12. Herman PK, Stack JH, DeModena JA, Emr SD. A novel protein kinase homolog essential for protein sorting to the yeast lysosome-like vacuole. Cell 1991; 64: 425–437.

    Article  PubMed  CAS  Google Scholar 

  13. Stack JH., Herman PK, Schu P, Emr SD. A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J 1993; 12:2195–2204.

    PubMed  CAS  Google Scholar 

  14. Kunz JR, Henriquez U, Schneider M, Deuter-Reinhard NR, Movva MN. Target of rapamycin in yeast, TOR2, is an essential phosphadidylinositol kinase homolog required for G1 progression. Cell 1993; 73: 585–596.

    Article  PubMed  CAS  Google Scholar 

  15. Xu P, Lloyd C, Staiger C, Drobak, B. Association of phosphotidylinositol 4-kinase with the plant cytoskeleton. Plant Cell 1992; 4: 941–951.

    PubMed  CAS  Google Scholar 

  16. Verma DPS, Kazazian V, Zogbi V, Bal AK. Isolation and characterization of the membrane envelope enclosing the bacteroids in soybean root nodules. J Cell Biol 1978; 78: 919–936.

    Article  PubMed  CAS  Google Scholar 

  17. Shpetner HS, Vallee RB. Identification of Dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 1989; 59: 421–432.

    Article  PubMed  CAS  Google Scholar 

  18. Hong Z, Verma DPS. A new posphatidylinositol 3-kinase is induced during soybean nodule organogenesis and isassociated with membrane proliferation. Proc Nat Acad Sci USA 1994; (in revision).

    Google Scholar 

  19. Obar RA, Collins CA, Hammarback JA, Shpetner HS, Vallee RB. Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 1990; 347: 256–261.

    Article  PubMed  CAS  Google Scholar 

  20. Herskovits JS, Burgess CC, Obar RA, Vallee RB. Effects of mutant rat dynamin on endocytosis. J Cell Biol 1993; 122:565–578.

    Article  PubMed  CAS  Google Scholar 

  21. Van der Bliek AM, Redelmerier TE, Damke H, Tisdale EJ, Meyerowitz EM, Schmid SL. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J Cell Biol 1993; 122: 553–563.

    Article  PubMed  Google Scholar 

  22. Van der Bliek AM, Meyerowitz EM. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 1991; 351: 411–414.

    Article  PubMed  Google Scholar 

  23. Chen MS, Obar RA, Schroeder CC et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 1991; 351: 583–586.

    Article  PubMed  CAS  Google Scholar 

  24. Poodry A, Hall L, Suzuki DT. Developmental properties of shibire: a pleiotropic mutation affecting larva and adult locomotion and development. Develop Biol 1973; 32: 373–386.

    Article  PubMed  CAS  Google Scholar 

  25. Gout I, Dhand R, Hiles ID et al. The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 1993; 75: 25–36.

    PubMed  CAS  Google Scholar 

  26. Robinson PJ, Sontag J, Liu J et al. Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals. Nature 1993; 365: 163–166.

    Article  PubMed  CAS  Google Scholar 

  27. Wilsbach K, Payne GS. Vpslp, a member of the dynamin GTPase family, is necessary for Golgi membrane protein retention in Saccaromyces cerevisiae. EMBO J 1993; 12: 3049–3059.

    PubMed  CAS  Google Scholar 

  28. Staeheli P, Pitossi F, Pavlvic J. Mx proteins: GTPase with antiviral activity. Trends Cell Biol 1993; 3:268–272.

    Article  PubMed  CAS  Google Scholar 

  29. Kornfeld S, Mellman I. The biogenesis of lysosomes. Ann Rev Cell Biol 1989; 5: 483–525.

    Article  PubMed  CAS  Google Scholar 

  30. Verma DPS, Cheon C-I, Hong Z. Small GTP-binding and membrane biogenesis. Plant Physiology 1994; (in Press).

    Google Scholar 

  31. Chrispeels M, Raikhel N. Short peptide domains target proteins to plant vacuoles. Cell 1992; 68: 613–616.

    Article  PubMed  CAS  Google Scholar 

  32. Bednarek SY, Raikhel NV. Intracellular trafficking of secretory proteins. Plant Mol Biol 1992; 20: 133–150.

    Article  PubMed  CAS  Google Scholar 

  33. Miao G-H, Hong Z, Verma DPS. Topology and phosphorylation of soybean nodulin-26, an intrinsic protein of the peribacteroid membrane. J Cell Biol 1992; 118: 481–490.

    Article  PubMed  CAS  Google Scholar 

  34. Cheon C-I, Hong Z, Verma DPS. Nodulin-24 follows a novel pathway for integration into the peribacteroid membrane in soybean root nodules. J Biol Chem 1994; 269: 6598–6602.

    PubMed  CAS  Google Scholar 

  35. d’Enfert C, Gensse M, Gaillardin C. Fission yeast and a plant have functional homologues of the Sarl and Sec12 proteins involved in ER to Golgi traffic in budding yeast. EMBO J 1992; 11: 4205–4211.

    PubMed  Google Scholar 

  36. Cheon C-I, Lee N-G, Siddique A-B M, Bal AK, Verma DPS. Roles of plant homologs of Rablp and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J 1993; 12: 4125–4135.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verma, D.P.S., Hong, Z., Gu, X. (1994). Signal Transduction and Endocytosis of Rhizobia in the Host Cells. In: Daniels, M.J., Downie, J.A., Osbourn, A.E. (eds) Advances in Molecular Genetics of Plant-Microbe Interactions. Current Plant Science and Biotechnology in Agriculture, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0177-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0177-6_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4079-2

  • Online ISBN: 978-94-011-0177-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics