Skip to main content

Electronic and Sensing Properties of Diamond

  • Chapter
Book cover Wide Band Gap Electronic Materials

Part of the book series: NATO ASI Series ((ASHT,volume 1))

  • 356 Accesses

Abstract

Diamond has attractive properties as an advanced electronic material. Its combination of high mobility, breakdown and thermal conductivity results in the largest Johnson’s and Keyes’ figures of merit by far. For example, the cutoff frequency of diamond transistors, as governed by the semiconductor material, suggests that if diamond devices could be realized, the enhancement in electronic performance would be extensive. Trew’s calculations of the frequency performance of realistically scaled diamond MESFETs noted “performance significantly better than possible with GaAs MESFETs.”

The high pressure diamond fabrication processes developed in the mid 1950’s synthesize particulate diamond. The direct deposition of diamonds layers from chemical vapor processes, pioneered by B. V. Derjaguin, B. V. Spitsyn and J. Angus, provide new vistas for diamond applications. These efforts have clearly demonstrated that diamond film with electronic potential can be routinely formed. The realization of that potential is another matter. There are material problems that curtail exploitation for circuits, principal among these is that the deposited films are often polycrystalline and hence contain grain boundaries, twins, stacking faults and other lineage and area defects which reduce the mobility and minority carrier lifetime. Although the potential of diamond has been demonstrated and active devices has been made, they were typically achieved by using homoepitax on natural or synthetic high pressure diamond substrates. To date there have been no corroborated observations of a means of achieving homoepitax (single crystal diamond grown on a non diamond substrate) and, therefore, no practical means of achieving diamond devices. Also, the excellent mobility values for carriers measured in natural single crystal diamond have not been routinely achieved in synthetic diamond film.

Nevertheless, polycrystalline diamond films (PDF) possess the same basic semiconductor materials properties which are desired for use in electronics and sensors, such as a wide band gap (5.45 eV), low thermal coefficient of expansion (~1 x 10-6 / °C) and high thermal conductivity (20 W(cmK)-1). Because of these properties, diamond devices could potentially be used in high-power, high-temperature environments. The development of a PDF passive device, such as a resistor, discussed in this presentation, facilities the refinement of techniques required for the development of diamond active devices. These techniques are, in part, adapted from standard microelectronic technologies. Furtheremore, there is a growing interest in the utilization of polycrystalline diamond film as a basic materials for sensor application, and with good cause. The feasibility of using the new diamond technology as a piezoresistor structure for strain sensing applications has been established and demonstrated by the author. The use of PDF resistor structures for strain sensing applications brings together many desirable characteristics, such as, high temperature operation, relatively high factor, small size, good mechanical, thermal, and chemical properties, electrical stability, and compatibility with hostile environments.

In this paper we review some of the reported achievements related to diamond as an electronic and sensor material. The state of heteroepitaxial films and polycrystalline diamond active electronics will be covered; negative electron affinity is briefly covered, and the pierzoresistive effect in diamond and its relevence to sensing is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Johnson, RCA Review, 26, 163, 1963.

    Google Scholar 

  2. R. J. Trew, J. Yan and P. M. Mock, Proceedings of the IEEE, 79 (5), 602, 1991.

    Article  Google Scholar 

  3. A. T. Collins, Materials Science and Engineering, B11, 257–263, 1992.

    CAS  Google Scholar 

  4. A. T. Collins, Semicond. Sci. Technol, 4, 605, 1989.

    Article  CAS  Google Scholar 

  5. W. Zhu, B. R. Stoner, B. E. Williams and J.T. Glass, Proceedings of the IEEE, 79 (5), 621–646, 1991.

    Article  CAS  Google Scholar 

  6. J. F. Prins, Appl. Phys. Lett., 41, 950–952, 1982.

    Article  CAS  Google Scholar 

  7. V. S. Vavilov, E. A. Konorova, E. B. Stepanova and E. M. Trukhan, Sov. Phys. Semicond, 13, 635–638, 1979.

    Google Scholar 

  8. Y. Tzeng, T. H. Lin, J. L. Davidson and L. S. Lan, Proc. Seventh Biennial University/Government/Industry Microelectronics Symposium, IEEE, Rochester, NY, 1987.

    Google Scholar 

  9. ibid 8.

    Google Scholar 

  10. M. W. Geis, D. D. Rathman, D. J. Ehrlich and R. A. Murphy, IEEE Elec. Dev. Lett, 8 (8), 341–343, 1987.

    Article  Google Scholar 

  11. M. W. Geis, N. N. Efremow and D. D. Rathman, J. Vac. Sci. Technol., A6 (3), 1953–1954, 1988.

    Google Scholar 

  12. M. W. Geis, N. N. Efremow, J. D. Woodhouse, M. D. McAleese, M. Marchywka, D. G. Socker and J. F. Hochedez, IEEE Electron Device Letters, 12 (8), 456–459, 1991.

    Article  CAS  Google Scholar 

  13. W. Tsai, M. Delfino, D. Hokul, M. Raiziat, L. Y. Ching, G. Reynolds and C. B. Cooper, IEEE Electron Device Letters, 12 (4), 157, 1991.

    Article  CAS  Google Scholar 

  14. G. S. Gildenblat, S. A. Grot and A. R. Badzian, Proa IEEE, 79 (5), 647–668, 1991.

    Article  CAS  Google Scholar 

  15. G. H. Glover, Solid-State Electron., 16, 973–983, 1973.

    Article  Google Scholar 

  16. S. A. Grot, G. S. Gildenblat, C. W. Hatfield, C. R. Wronski, A. R. Badzian, T. Badzian and R. Messier, IEEE Electron Device Letters, 11, 100, 1990.

    Article  CAS  Google Scholar 

  17. J. C. Angus and C. C. Hayman, Science, 241, 913–921, 1988.

    Article  CAS  Google Scholar 

  18. P. K. Bachmann, D. Leers and H. Lydtin, Diamond and Related Materials, 1, 1–12, 1991.

    Article  CAS  Google Scholar 

  19. J. Narayan, V. P. Godbole, C. W. White, Science, 252, 416–418, 1991.

    Article  CAS  Google Scholar 

  20. M. W. Geis and J. C. Angus, Scientific American, October, 84–89, 1992.

    Google Scholar 

  21. L. S. Pan, D. R. Kania, S. Han, J. W. Agerii, M. Landstrass, O. L. Landen and P. Pianetta, Science, 255, 830–833, 1992.

    Article  CAS  Google Scholar 

  22. K. Nishimura, K. Das and J. T. Glass, J. Appl. Phys., 69 (5), 3142–3148, 1991.

    Article  CAS  Google Scholar 

  23. L. M. Edwards and J. L. Davidson, Third Int. Conf. on the New Diamond Sci. and Tech., Heidelberg, Germany, September, 1992.

    Google Scholar 

  24. K. Okano, H. Kiyota, T. Iwasaki and Y. Nakamura, Solid State Electronics, 34, 139–141, 1991.

    Article  CAS  Google Scholar 

  25. J. W. Glesener, A. A. Morrish and K. A. Snail, Applications of Diamond Films and Related Materials, edited by Y. Tzeng, M. Yoshikawa, M. Murakawa and A. Feldman, Elsevier Science Publishers, B. V., 347, 1991.

    Google Scholar 

  26. K. Miyata, D. L. Dreifus, K. Das, J. T. Glass and K. Kobashi, Second International Symposium on Diamond Materials, The Electrochemical Society Meeting, Washington, DC, 1991.

    Google Scholar 

  27. A. J. Tessmer, L. S. Piano and D. L. Dreifus, Proceedings of the Fiftieth Annual Device Research Conference, MIT, Cambridge, MA, 1992.

    Google Scholar 

  28. G. B. Rodgers and F. A. Rail, Rev. Sci. Instrum., 31, 663–664, 1960.

    Article  Google Scholar 

  29. L. A. Vermeiden and A. J. Harris, Diamond Res., Suppl. to Ind. Diam. Rev., 37 [1977], 25–26, 1977.

    Google Scholar 

  30. L. A. Vermeiulen and A. J. Harris, J. Appl. Phys., 49, 913–916, 1978.

    Article  Google Scholar 

  31. P. T. Ho and C. H. Lee, Opt. Commun, 46, 202–204, 1983.

    Article  CAS  Google Scholar 

  32. J. F. Young, L. A. Vermeiulen and H. M. van Driel, Proa Int. Conf. Lasers, 110–112, 1981.

    Google Scholar 

  33. D. R. Kama, M. I. Landstrass, M. A. Piano, L. S. Pan and S. Han, Diamond and Related Materials, vol. 2, 1012–1019, 1993.

    Article  Google Scholar 

  34. S. C. Binari, M. Marchywka, D. A. Koolbeck, H. B. Dietrich and D. Moses, Diamond and Related Materials, vol. 2, 1020–1023, 1993.

    Article  CAS  Google Scholar 

  35. M. W. Geis, J. A. Gregory and B. B. Pate, IEEE Transactions on Electron Devices, 38 (3), 619–626, 1991.

    Article  CAS  Google Scholar 

  36. W. F. Wei and W. J. Leivo, Carbon, 13, 425–430, 1975.

    Article  CAS  Google Scholar 

  37. F. J. Himpsel, J. A. Knapp, J. A. Van Vechten and D. E. Eastman, Phys. Rev., B20, 624–627, 1979.

    Google Scholar 

  38. ibid 35.

    Google Scholar 

  39. C. P. Beetz and S. H. Tan, SPIE Proc. Vol. 1759: Diamond Optics V, San Diego, CA, 1992.

    Google Scholar 

  40. J. L. Davidson and X. Cao, Second International Symposium on Diamond Materials, 179th Meeting of the Electrochemical Society, Washington, D.C., May 5–10, 1991.

    Google Scholar 

  41. C. Wang, A. Garcia, D. C. Ingram, M. Lake and M. E. Kordesch, Electronic Lett, 27, 1459, 1991.

    Article  CAS  Google Scholar 

  42. M. Aslam, I. Taher, A. Masood, M. A. Tamor and T. J. Potter, Appl. Phys. Lett, 60(23), 2923–2925, 1992.

    Article  CAS  Google Scholar 

  43. M. Werner, K. Holzner, O. Dorsch, E. Obermeier, R. E. Harper, C. Johnson, P. R. Chalker and I. M. Buckley-Golder, Diamond and Related Materials, 2, 1096–1099, 1993.

    Article  Google Scholar 

  44. J. L. Davidson, R. Ramesham and C. Ellis, J. Electrochem. Soc, 137. 3206, 1990.

    Article  CAS  Google Scholar 

  45. C. S. Smith, Phys. Rev., 94, 42–49, 1954

    Article  CAS  Google Scholar 

  46. J. Y. W. Seto, J. Appl. Phys., 47(11), 4780–4783, 1976.

    Article  CAS  Google Scholar 

  47. P. J. French and A. G. R. Evans, Solid-State Electronics, 32(1), 1–10, 1989.

    Article  CAS  Google Scholar 

  48. Y. Kanda, Sensors and Actuators A, 28, 83–91, 1991.

    Article  Google Scholar 

  49. V. Mosser, J. Suski and J. Goss, Sensors and Actuators A, 28, 113–132, 1991.

    Article  Google Scholar 

  50. G. Zhao and M. Bao, Chin. J. Semi., 10, (9), 692–701, 1989.

    Google Scholar 

  51. S. M. Chitale and C. Y. D. Huang, Proceedings 7th International Microelectronics Conference, 561–570, 1992.

    Google Scholar 

  52. D. Wur, J. L. Davidson, W. P. Kang and D. L. Kinser, Transducers, 93, Yokohama, Japan, 1993.

    Google Scholar 

  53. from Design Considerations for Diaphragm Pressure transducers, Micro-Measurements Tech Note, 129, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davidson, J.L. (1995). Electronic and Sensing Properties of Diamond. In: Prelas, M.A., Gielisse, P., Popovici, G., Spitsyn, B.V., Stacy, T. (eds) Wide Band Gap Electronic Materials. NATO ASI Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0173-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0173-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4078-5

  • Online ISBN: 978-94-011-0173-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics