Advertisement

Quantum Measurement by Quantum Brain

  • Mari Jibu
  • Kunio Yasue
Part of the Mathematics and Its Applications book series (MAIA, volume 317)

Abstract

The orthodox theory of measurement due to von Neumann, London and Bauer, and Wigner is revisited from a new point of view in which physical correlates of consciousness of an observer manifest quantum coherence. The result of an observation of a quantum mechanical system in a state of superposition is stored in a state of mixture of metastable classical vacua with spontaneously broken symmetry. Goldstone bosons inherent in such long-range ordered states play the key roles to complete the act of measurement which have been long attributed to a transcendental ”abstract ego.”

Keywords

Electric Dipole Moment Quantum Measurement Goldstone Boson Heisenberg Equation Copenhagen Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, G. S., 1971, Master-equation approach to spontaneous emission III: many-body aspects of emission from two-level atoms and the effect of inhomogeneous broadening. Phys. Rev. A4, 1791–1801.ADSGoogle Scholar
  2. 2.
    Araki, H., 1987, On superselection rules, in: Proc. 2nd Int. Symp. Foundations of Quantum Mechanics, Y. Ohnuki et al. (eds.) (Physical Society of Japan, Tokyo).Google Scholar
  3. 3.
    Crick, F. and Koch, C., 1990, Towards a neurobiological theory of consciousness. Seminars in the Neurosciences 2, 263–275.Google Scholar
  4. 4.
    Dicke, R. H., 1954, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110.ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Franks, F., 1972, Water: A Comprehensive Treatise (Plenum, New York).Google Scholar
  6. 6.
    Hameroff, S. R., 1974, Chi: a neural hologram? Am. J. Chi. Med. 2, 163–170.CrossRefGoogle Scholar
  7. 7.
    Hameroff, S. R., 1987, Ultimate Computing: Biomotecular Consciousness and NanoTechnology (North-Holland, Amsterdam).Google Scholar
  8. 8.
    Jibu, M., Hagan, S., Hameroff, S. R., Pribram, K. H. and Yasue, K., 1993, Quantum optical coherence in cytoskeletal microtubules: implications for brain function, in press.Google Scholar
  9. 9.
    Jibu, M. and Yasue, K., 1992A, A physical picture of Umezawa’s quantum brain dynamics, in: Cybernetics and Systems Research’ 92, R. Trappl (ed.) (World Scientific, Singapore).Google Scholar
  10. 10.
    Jibu, M. and Yasue, K., 1992B, The basics of quantum brain dynamics, in: Proceedings of the First Appalachian Conference on Behavioral Neurodynamics, K. H. Pribram (ed.) (Center for Brain Research and Informational Sciences, Radford University, Radford, September 17-20).Google Scholar
  11. 11.
    Jibu, M. and Yasue, K., 1993A, Intracellular quantum signal transfer in Umezawa’s quantum brain dynamics. Cybernetics and Systems: An International Journal 24, 1–7.CrossRefGoogle Scholar
  12. 12.
    Jibu, M. and Yasue, K., 1993B, Introduction to quantum brain dynamics, in: Nature, Cognition and System III, E. Carvallo (ed.) (Kluwer Academic, London).Google Scholar
  13. 13.
    London, F. and Bauer, E., 1939, Théorie de l’Observation en Mécanique Quantique (Hermann, Paris).Google Scholar
  14. 14.
    McCall, S. L. and Hahn, E. L., 1967, Self-induced transparency by pulsed coherent light. Phys. Rev. Lett. 18, 908–911.ADSCrossRefGoogle Scholar
  15. 15.
    Marshall, I. N., 1989, Consciousness and Bose-Einstein condensates. New Ideas in Psychology 7, 73–83.CrossRefGoogle Scholar
  16. 16.
    Nelson, E., 1967, Dynamical Theories of Brownian Motion (Princeton University Press, New Jersey).zbMATHGoogle Scholar
  17. 17.
    Penrose, R., 1989, The Emperor’s New Mind (Oxford University Press, London).Google Scholar
  18. 18.
    Penrose, R., 1993, Shadows of the Mind (Oxford University Press, London).Google Scholar
  19. 19.
    Pribram, K. H., 1966, Some dimensions of remembering: steps toward a neuropsychological model of memory, in: Macromolecules and Behavior, J. Gaito (ed.) (Academic Press, New York).Google Scholar
  20. 20.
    Pribram, K. H., 1971, Languages of the Brain (Englewood Cliffs, New Jersey).Google Scholar
  21. 21.
    Pribram, K. H., 1991, Brain and Perception (Lawrence Erlbaum, New Jersey).Google Scholar
  22. 22.
    Ricciardi, L. M. and Umezawa, H., 1967, Brain and physics of many-body problems. Kybernetik 4, 44–48.CrossRefGoogle Scholar
  23. 23.
    Singer, W., 1993, Synchronization of cortical activity and its putative role in information processing and learning. Ann. Rev. Physiol. 55, 349–374.CrossRefGoogle Scholar
  24. 24.
    Stuart, C. I. J. M., Takahashi, Y. and Umezawa, H., 1978, On the stability and non-local properties of memory. J. Theor. Biol. 71, 605–618.CrossRefGoogle Scholar
  25. 25.
    Stuart, C. I. J. M., Takahashi, Y. and Umezawa, H., 1979, Mixed-system brain dynamics: neural memory as a macroscopic ordered state. Found. Phys. 9, 301–327.MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    von Neumann, J., 1932, Mathematishe Grundlagen der Quantenmechanik (Springer, Berlin).Google Scholar
  27. 27.
    Wigner, E. P., 1963, The problem of measurement. Am. J. Phys. 31, 6–15.MathSciNetADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Yasue, K., 1978, Quantum decay process of meta-stable vacuum states in SU(2) Yang-Mills theory: a probability theoretical point of view. Phys. Rev. D18, 532–541.MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Mari Jibu
    • 1
  • Kunio Yasue
    • 1
  1. 1.Research Institute for Informatics and ScienceNotre Dame Seishin UniversityOkayama 700Japan

Personalised recommendations