Skip to main content

Quantum Measurement by Quantum Brain

  • Chapter
Stochasticity and Quantum Chaos

Part of the book series: Mathematics and Its Applications ((MAIA,volume 317))

  • 254 Accesses

Abstract

The orthodox theory of measurement due to von Neumann, London and Bauer, and Wigner is revisited from a new point of view in which physical correlates of consciousness of an observer manifest quantum coherence. The result of an observation of a quantum mechanical system in a state of superposition is stored in a state of mixture of metastable classical vacua with spontaneously broken symmetry. Goldstone bosons inherent in such long-range ordered states play the key roles to complete the act of measurement which have been long attributed to a transcendental ”abstract ego.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, G. S., 1971, Master-equation approach to spontaneous emission III: many-body aspects of emission from two-level atoms and the effect of inhomogeneous broadening. Phys. Rev. A4, 1791–1801.

    ADS  Google Scholar 

  2. Araki, H., 1987, On superselection rules, in: Proc. 2nd Int. Symp. Foundations of Quantum Mechanics, Y. Ohnuki et al. (eds.) (Physical Society of Japan, Tokyo).

    Google Scholar 

  3. Crick, F. and Koch, C., 1990, Towards a neurobiological theory of consciousness. Seminars in the Neurosciences 2, 263–275.

    Google Scholar 

  4. Dicke, R. H., 1954, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110.

    Article  ADS  MATH  Google Scholar 

  5. Franks, F., 1972, Water: A Comprehensive Treatise (Plenum, New York).

    Google Scholar 

  6. Hameroff, S. R., 1974, Chi: a neural hologram? Am. J. Chi. Med. 2, 163–170.

    Article  Google Scholar 

  7. Hameroff, S. R., 1987, Ultimate Computing: Biomotecular Consciousness and NanoTechnology (North-Holland, Amsterdam).

    Google Scholar 

  8. Jibu, M., Hagan, S., Hameroff, S. R., Pribram, K. H. and Yasue, K., 1993, Quantum optical coherence in cytoskeletal microtubules: implications for brain function, in press.

    Google Scholar 

  9. Jibu, M. and Yasue, K., 1992A, A physical picture of Umezawa’s quantum brain dynamics, in: Cybernetics and Systems Research’ 92, R. Trappl (ed.) (World Scientific, Singapore).

    Google Scholar 

  10. Jibu, M. and Yasue, K., 1992B, The basics of quantum brain dynamics, in: Proceedings of the First Appalachian Conference on Behavioral Neurodynamics, K. H. Pribram (ed.) (Center for Brain Research and Informational Sciences, Radford University, Radford, September 17-20).

    Google Scholar 

  11. Jibu, M. and Yasue, K., 1993A, Intracellular quantum signal transfer in Umezawa’s quantum brain dynamics. Cybernetics and Systems: An International Journal 24, 1–7.

    Article  Google Scholar 

  12. Jibu, M. and Yasue, K., 1993B, Introduction to quantum brain dynamics, in: Nature, Cognition and System III, E. Carvallo (ed.) (Kluwer Academic, London).

    Google Scholar 

  13. London, F. and Bauer, E., 1939, Théorie de l’Observation en Mécanique Quantique (Hermann, Paris).

    Google Scholar 

  14. McCall, S. L. and Hahn, E. L., 1967, Self-induced transparency by pulsed coherent light. Phys. Rev. Lett. 18, 908–911.

    Article  ADS  Google Scholar 

  15. Marshall, I. N., 1989, Consciousness and Bose-Einstein condensates. New Ideas in Psychology 7, 73–83.

    Article  Google Scholar 

  16. Nelson, E., 1967, Dynamical Theories of Brownian Motion (Princeton University Press, New Jersey).

    MATH  Google Scholar 

  17. Penrose, R., 1989, The Emperor’s New Mind (Oxford University Press, London).

    Google Scholar 

  18. Penrose, R., 1993, Shadows of the Mind (Oxford University Press, London).

    Google Scholar 

  19. Pribram, K. H., 1966, Some dimensions of remembering: steps toward a neuropsychological model of memory, in: Macromolecules and Behavior, J. Gaito (ed.) (Academic Press, New York).

    Google Scholar 

  20. Pribram, K. H., 1971, Languages of the Brain (Englewood Cliffs, New Jersey).

    Google Scholar 

  21. Pribram, K. H., 1991, Brain and Perception (Lawrence Erlbaum, New Jersey).

    Google Scholar 

  22. Ricciardi, L. M. and Umezawa, H., 1967, Brain and physics of many-body problems. Kybernetik 4, 44–48.

    Article  Google Scholar 

  23. Singer, W., 1993, Synchronization of cortical activity and its putative role in information processing and learning. Ann. Rev. Physiol. 55, 349–374.

    Article  Google Scholar 

  24. Stuart, C. I. J. M., Takahashi, Y. and Umezawa, H., 1978, On the stability and non-local properties of memory. J. Theor. Biol. 71, 605–618.

    Article  Google Scholar 

  25. Stuart, C. I. J. M., Takahashi, Y. and Umezawa, H., 1979, Mixed-system brain dynamics: neural memory as a macroscopic ordered state. Found. Phys. 9, 301–327.

    Article  MathSciNet  ADS  Google Scholar 

  26. von Neumann, J., 1932, Mathematishe Grundlagen der Quantenmechanik (Springer, Berlin).

    Google Scholar 

  27. Wigner, E. P., 1963, The problem of measurement. Am. J. Phys. 31, 6–15.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Yasue, K., 1978, Quantum decay process of meta-stable vacuum states in SU(2) Yang-Mills theory: a probability theoretical point of view. Phys. Rev. D18, 532–541.

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jibu, M., Yasue, K. (1995). Quantum Measurement by Quantum Brain. In: Haba, Z., Cegła, W., Jakóbczyk, L. (eds) Stochasticity and Quantum Chaos. Mathematics and Its Applications, vol 317. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0169-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0169-1_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4076-1

  • Online ISBN: 978-94-011-0169-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics