Skip to main content

Control of Nonlinear Systems Using Input Output Information

  • Chapter
Methods of Model Based Process Control

Part of the book series: NATO ASI Series ((NSSE,volume 293))

  • 564 Accesses

Abstract

Most chemical processes are nonlinear and difficult to model. Usually detailed first principle dynamic models are either not available or they are not amenable to practical controller designs. On the other hand, traditional linear controllers often fail to control nonlinear process units over a wide range of operating conditions and external process disturbances. With tighter constraints on product quality, environmental regulations and energy utilization, there is now a growing need for reliable predictive models and new on-line control algorithms for nonlinear processes.

This paper addresses the control of nonlinear systems using available plant data (input-output information). In particular the use of polynomial ARX models for nonlinear process control purposes is emphasized. After discussing theoretical justification for the use of such models and their practical advantages, the first part of the paper presents an identification algorithm for the construction of polynomial ARX models where we discuss data generation, model structure selection, parameter estimation and model validation. Next, for these classes of models, we show how to design nonlinear predictive controllers. Implementation issues such as disturbance modeling, state and parameter estimation are discussed. By using polynomial models, it is shown that the nonlinear optimization problem can be solved globally at each sampling time to compute the control moves. One detailed reactor example is given to demonstrate the utility of the polynomial ARX based MPC algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Akaike. Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory, page 267, 1972.

    Google Scholar 

  2. S.A. Billings and W.S.F. Voon. Structure detection and model validity tests in the identification of nonlinear systems. IEE Proceedings, Part D, 130:193, 1983.

    MATH  Google Scholar 

  3. S.A. Billings and W.S.F. Voon. Least squares parameter estimation algorithm for nonlinear systems. International Journal of System Science, 15:601, 1984.

    MathSciNet  MATH  Google Scholar 

  4. S.A. Billings and W.S.F. Voon. Correlation based model validity tests for nonlinear systems. International Journal of Control, 44:235, 1986.

    Article  MATH  Google Scholar 

  5. S. Boyd and L.O. Chua. Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Transactions of Circuits and Systems, 32:1150, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  6. F.H. Chang and R. Luss. A noniterative method for identification using the Hammerstein model. IEEE Transactions of Automatic Control, 16:464, 1971.

    Article  Google Scholar 

  7. V. Constanza, B.W. Dickingson, and E.F. Johnson. Universal approximations for discrete-time control systems over finite time. IEEE Transactions on Automatic Control, 28:439, 1983.

    Article  MATH  Google Scholar 

  8. P. de Valliere and D. Bonvin. Application of estimation techniques to batch reactors. iii. modelling refinements which improve the quality of state and parameter estimation. Computers and Chemical Engineering, 14:799, 1990.

    Article  Google Scholar 

  9. H. Díaz and A. Desrochers. Modelling of nonlinear discrete-time systems for input / output data. Automatica, 24:629, 1988.

    Article  MATH  Google Scholar 

  10. J. Dimitratos, C. Georgiakis, M.S. El-Aasser, and A. Klein. Dynamic modelling and state estimation for an emulsion copolymerization reactor. Computers and Chemical Engineering, 13:21, 1989.

    Article  Google Scholar 

  11. J. Eaton and J.B. Rawlings. Model predictive control of chemical processes. In Proceedings of the 1991 ACC, page 1790, 1991.

    Google Scholar 

  12. E. Eskinat, S.H. Johnson, and W.L. Luyben. Use of Hammerstein models in identification of nonlinear systems. AIChE Journal, 37:255, 1991.

    Article  Google Scholar 

  13. E.B. Feng, J.S. Yu, and W.S. Jiang. New method for predictive controller design for bilinear systems. International Journal of Control, 53:97, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Fliess and D. Normand Cyrot. On the approximation of nonlinear systems by some simple state-space models. In Identification and System Parameter Estimation, page 511, 1982.

    Google Scholar 

  15. C. A. Floudas and V. Visweswaran. A Global Optimization Algorithm (GOP) for certain classes of nonconvex NLPs-I. Theory. Computers and Chem. engng., 14:1397, 1990.

    Article  Google Scholar 

  16. T.R. Fortescue, L.S. Kershenbaum, and B.E. Ydstie. Implementation of self tuning regulators with variable forgetting factors. Automatica, 17:831, 1981.

    Article  Google Scholar 

  17. R. Haber and H. Unbehauen. Structure identification of nonlinear dynamical systems — a survey on input / output approaches. Automatica, 26:651, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Hernández. Control of Nonlinear Systems Using Input-Output Information. PhD dissertation, Georgia Institute of Technology, Department of Chemical Engineering, 1992.

    Google Scholar 

  19. E. Hernández and Y. Arkun. A study of the control relevant properties of back-propagation neural net models of nonlinear dynamical systems. Computers and Chemical Engineering, 16:227, 1992.

    Article  Google Scholar 

  20. E. Hernandez and Y. Arkun. Control of nonlinear systems using polynomial arma models. AIChE, 39:446, 1993.

    Article  Google Scholar 

  21. E. Hernández and Y. Arkun. On the global solution to nonlinear model predictive control algorithms that use polynomial models. Computers and Chemical Engineering, 18:533, 1994a.

    Article  Google Scholar 

  22. E. Hernández and Y. Arkun. Stability of nonlinear polynomial narma models and their inverse. Submitted to International Journal of Control, 1994b.

    Google Scholar 

  23. D. M. Keenan. A Tukey non-additivity type test for time series nonlinearity. Biometrika, 72:39, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Korenberg, S.A. Billings, Y.P. Liu, and P.J. Mcllroy. Orthogonal parameter estimation algorithm for nonlinear stochastic systems. International Journal of Control, 48:193, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Kortmann and H. Unbehauen. Sructure detection in the identification of nonlinear systems. Autom. Prod. Infor. Ind., 22:5, 1988.

    MathSciNet  MATH  Google Scholar 

  26. A.C. Lee. Minimum-variance controller for a class of nonlinear systems. International Journal of Systems Science, 21:2091, 1990.

    Article  MATH  Google Scholar 

  27. I.J. Leontaritis and S.A. Billings. Experimental desing and identifiability of nonlinear systems. International Journal of System Science, page 189, 1987.

    Google Scholar 

  28. L. Ljung. Asymptotic behavior of the extended kalman filter as a parameter estimator for linear systems. IEEE Transactions on Automatic Control, 24:36, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Ljung. System Identification-Theory for the User, chapter 11. Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

    MATH  Google Scholar 

  30. D.C. Montgomery and E.A. Peck. Introduction to Linear Regression Analysis. John Wiley and Sons, New York, New York, 1982.

    MATH  Google Scholar 

  31. M. Morari and J.H. Lee. Model predictive control: The good, the bad and the ugly. In Proceedings of CPC IV, page 419, 1991.

    Google Scholar 

  32. K.S. Narendra and P.G. Gallman. An iterative method for the identification of nonlinear systems using the Hammerstein model. IEEE Transactions of Automatic Control, 12:526, 1966.

    Google Scholar 

  33. K.S. Narendra and K. Parthasarathy. Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1:4, 1990.

    Article  Google Scholar 

  34. R. K. Pearson, B. Ogunnaike, and F. J. Doyle. Identification of 2nd-order Volterra models for chemical processes. manuscript in preparation, 1994.

    Google Scholar 

  35. R.K. Pearson. Nonlinear input/output modeling. In ADCHEM’94, pages 1–15, 1994.

    Google Scholar 

  36. J. C. Peyton Jones and S.A. Billings. Interpretation of nonlinear frequency response functions. International Journal of Control, 52:319, 1989.

    Article  MathSciNet  Google Scholar 

  37. N.L. Ricker. Model predictive control: State of the art. In Proceedings of CPC IV, page 271, 1991.

    Google Scholar 

  38. D.E. Rivera, J.F. Pollard, L.E. Sterman, and C.E. Garcia. An industrial perspective on control relevant identification. In Proceedings of the 1990 ACC, page 2406, 1990.

    Google Scholar 

  39. W.J. Rugh. Nonlinear System Theory, the Volterra / Wiener Approach. John Hopkins University Press, Baltimore, Maryland, 1981.

    MATH  Google Scholar 

  40. K.R. Sales and S.A. Billings. Self-tuning control of nonlinear NARMAX models. International Journal of Control, 51:753, 1990.

    Article  MATH  Google Scholar 

  41. M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems. Wiley, New York, New York, 1980.

    MATH  Google Scholar 

  42. P.B. Sistu and B. W. Bequette. Nonlinear predictive control of uncertain processes: Application to a CSTR. AICHE Journal, 37:1711, 1991.

    Article  Google Scholar 

  43. R. D. Snee. Validation of regression models: Methods and examples. Technometrics, 19:415, 1977.

    Article  MATH  Google Scholar 

  44. T. Soderstrom and P. Stoica. Comparison of instrumental variable methods — consistency and accuracy aspects. Automatica, 17:535, 1981.

    Article  Google Scholar 

  45. E.D. Sontag. Realization theory of discrete-time nonlinear systems: Part I-the bounded case. IEEE Transactions on Circuits and Systems, 26:342, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  46. H.W. Sorenson. Parameter Estimation: Principles and Problems. Marcel Dekker, New York, New York, 1980.

    MATH  Google Scholar 

  47. G. R. Sriniwas and Y. Arkun. A global solution to the nonlinear model predictive control algorithms using polynomial ARX models. Manuscript under preparation, 1994.

    Google Scholar 

  48. N.R. Sripada and D.G. Fisher. Improved least squares identification. International Journal of Control, 46:1889, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  49. P. Stoica and T. Sordestrom. Instrumental variable methods for identification of Hammerstein systems. International Journal of Control, 35:396, 1982.

    Google Scholar 

  50. M. Stone. Cross-validating choice and assesment of statistical predictions. Journal of the Royal Statistical Society Series B, 36:111, 1974.

    MATH  Google Scholar 

  51. H. Tong. Nonlinear Time Series Analysis: A Dynamical Approach. Oxford University Press, New York, New York, 1990.

    Google Scholar 

  52. A. Uppal, W. H. Ray, and A.B. Poore. On the dynamic behavior of continuous stirred tank reactors. Chemical Engineering Science, 29:967, 1974.

    Article  Google Scholar 

  53. N. Wiener. Response of a nonlinear devise to noise. Technical Report V-16S, MIT Radiation Laboratory, 1942.

    Google Scholar 

  54. E. Zafiriou. Robustness and tuning of on-line optimizing control algorithms. In IFAC Model Based Process Control, page 89, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arkun, Y., Hernández, E. (1995). Control of Nonlinear Systems Using Input Output Information. In: Berber, R. (eds) Methods of Model Based Process Control. NATO ASI Series, vol 293. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0135-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0135-6_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4061-7

  • Online ISBN: 978-94-011-0135-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics