Skip to main content

Photochemistry of Organic Molecules Within Zeolites: Role of Cations

  • Chapter
Inclusion Chemistry with Zeolites: Nanoscale Materials by Design

Part of the book series: Topics in Inclusion Science ((TISC,volume 6))

Abstract

Photochemistry in organized media has attracted considerable attention during the last decade [1]. A number of materials have been utilized to “hold” molecules in a fixed orientation so as to initiate reactions. Often, such media do not remain “passive” and they themselves interact with the guest molecules and influence their photobehavior. When this occurs the material is considered to be “active” [2]. In this chapter, we are concerned with zeolites, which depending on the guest and the reaction remain either active or passive. Zeolites have been known for over two centuries and have been actively investigated by chemists with interest in their catalytic behavior for over three decades. However, photochemists’ interest in such systems is only recent and can be traced to a few classic papers published in the 1980’s [3]. In recent years, increasing interest in utilizing zeolites to influence the photobehavior of molecules has become evident. This chapter provides a brief summary of the work carried out in our laboratories in the area of photochemistry and photophysics of organic molecules included within X and Y zeolites. Work carried out in other zeolites is not part of this review. Although our work has been placed in a proper context with reference to the publications of others, no attempt has been made in this article to provide an exhaustive, in depth, and critical coverage of the literature [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Kalyanasundaram, Photochemistry in Microheterogeneous Systems, Academic Press, New York (1987);

    Google Scholar 

  2. T. Matsuura and M. Anpo (Eds), Photochemistry on Solid Surfaces, Elsevier, Amsterdam (1989);

    Google Scholar 

  3. V. Ramamurthy (Ed), Photochemistry in Organized and Constrained Media, VCH, New York (1991);

    Google Scholar 

  4. H.-J. Schneider, and H. Durr (Eds), Frontiers in Supramolecular Organic Chemistry and Photochemistry, VCH; Weinheim (1991);

    Google Scholar 

  5. V. Balzani and F. Scandola, Supramolecular Photochemistry, Ellis Horwood, Chichester, England (1991).

    Google Scholar 

  6. V. Ramamurthy, R. G. Weiss, and G. S. Hammond, Adv. Photochem., 18, 67 (1993).

    Article  CAS  Google Scholar 

  7. N. J. Turro and P. Wan, Tetrahedron Letters, 25, 3655 (1984);

    Article  CAS  Google Scholar 

  8. H. L. Casal and J. C. Scaiano, Can. J. Chem., 62, 628 (1984);

    Article  CAS  Google Scholar 

  9. S. L. Suib and A. Kostapapas, J. Am. Chem. Soc., 106, 7705 (1984).

    Article  CAS  Google Scholar 

  10. For a summary see:

    Google Scholar 

  11. N. J. Turro, Pure & Appl. Chem., 58, 1219 (1986);

    Article  CAS  Google Scholar 

  12. N. J. Turro, in Molecular Dynamics in Restricted Geometries, J. Klafter and J. M. Drake (Eds), John Wiley, New York, p 387 (1989);

    Google Scholar 

  13. V. Ramamurthy, in Photochemistry in Organized and Constrained Media, V. Ramamurthy (Ed), VCH, New York, p 429 (1991);

    Google Scholar 

  14. N. J. Turro and M. Garcia-Garibay, in Photochemistry in Organized and Constrained Media, V. Ramamurthy (Ed), VCH, New York, p 1 (1991);

    Google Scholar 

  15. V. Ramamurthy, D. F. Eaton, and J. V Caspar, Acc. Chem. Res., 25, 299 (1992);

    Article  CAS  Google Scholar 

  16. V. Ramamurthy, Chimia, 46, 359 (1992);

    Google Scholar 

  17. P. Kamat, Chem. Rev., 93, 267 (1993);

    Article  CAS  Google Scholar 

  18. J. K. Thomas, Chem. Rev., 93, 301 (1993);

    Article  CAS  Google Scholar 

  19. K. B. Yoon, Chem. Rev., 93, 321 (1993);

    Article  CAS  Google Scholar 

  20. V. Ramamurthy and D. F. Eaton, Chem. Materials, 6, 1128 (1994).

    Article  CAS  Google Scholar 

  21. D. W. Breck, Zeolite Molecular Sieves: Structure,Chemistry, and Use, John Wiley and Sons, New York (1974);

    Google Scholar 

  22. A. Dyer, An Introduction to Zeolite Molecular Sieves, John Wiley and Sons, Bath (1988);

    Google Scholar 

  23. H. van Bekkum, E. M. Flanigen and J. C. Jansen (Eds), Introduction to Zeolite Science and Practice, Elsevier, Amsterdam (1991);

    Google Scholar 

  24. R. Szostak, Molecular Sieves. Principles of Synthesis and Identification, Van Nostrand, New York (1989).

    Google Scholar 

  25. D. W. Breck, Zeolite Molecular Sieves: Structure, Chemistry, and Use, John Wiley and Sons, New York, pp 529–592 (1974).

    Google Scholar 

  26. W. M. Meier and D. H. Olson, in Atlas of Zeolite Structure Types, Butterworths, Cambridge (Second Revised Edition), pp 96–97 (1987);

    Google Scholar 

  27. R. Szostak, Handbook of Molecular Sieves, Van Nostrand Reinhold, New York, pp 183–188 (1992).

    Google Scholar 

  28. Calculations of polyhedral volumes were performed using a modification of the POLYVOL Program [D. Swanson and R. C. Peterson, The Canadian Mineralogist, 18, 153 (1980); D. K. Swanson and R. C. Peterson, “POLYVOL Program Documentation”, Virginia Polytechnic Institute, Blacksburg, VA] assuming the radius of the TO2 unit to be 2.08 Å (equivalent to that of quartz).

    Google Scholar 

  29. R. G. Weiss, V. Ramamurthy, and G. S. Hammond, Acc. Chem. Res., 26, 530 (1993).

    Article  CAS  Google Scholar 

  30. M. Hepp, V. Ramamurthy, D. R. Corbin, and C. Dybowski, J. Phys. Chem., 96, 2629 (1992).

    Article  CAS  Google Scholar 

  31. V. Ramamurthy, Mol. Cryst. Liq. Cryst., 240, 53 (1994).

    Article  CAS  Google Scholar 

  32. V. Ramamurthy, D. R. Sanderson, and D. F. Eaton. J. Phys. Chem., 97, 13380 (1993).

    Article  CAS  Google Scholar 

  33. V. Ramamurthy and J. V CasparMol, Cryst. Liq. Cryst., 211, 211 (1992).

    Article  CAS  Google Scholar 

  34. Y. S. Liu, P. de Mayo, and W. R. Ware, J. Phys. Chem., 97, 5987, 5995 (1993).

    Article  CAS  Google Scholar 

  35. V. Ramamurthy, D. R. Corbin, and L. J. Johnston, J. Am. Chem. Soc., 114, 3870 (1992).

    Article  CAS  Google Scholar 

  36. E. J. Baum, J. K. S. Wan, and J. N. Pitts, J. Am. Chem. Soc., 88, 2652 (1966)

    Article  CAS  Google Scholar 

  37. D. R. Kearns and W. Case, J. Am. Chem. Soc., 88, 5087 (1966);

    Article  CAS  Google Scholar 

  38. A. A. Lamola, J. Chem. Phys., 47, 4810 (1967);

    Article  CAS  Google Scholar 

  39. P. J. Wagner, A. E. Kemppainen, and H. Schott, J. Am. Chem. Soc., 95, 5604 (1973).

    Article  CAS  Google Scholar 

  40. V. Ramamurthy, D. R. Sanderson, and D. F. Eaton, Photochem. Photobiol., 56, 297 (1992).

    Article  CAS  Google Scholar 

  41. V. Ramamurthy and D. F. Eaton, in Proceedings of the 9th International Zeolite Conference, R. von Ballmoos, J. B. Higgins and M. M. J. Treacy (Eds), Butterworth-Heinemann, Boston, p 587 (1992).

    Google Scholar 

  42. V. Ramamurthy, D. R. Corbin, N. J. Turro, and Y. Sato, Tetrahedron Lett., 30, 5829 (1989);

    Article  CAS  Google Scholar 

  43. V. Ramamurthy, X. G. Lei, N. J. Turro, T. R. Lewis, and J. R. Scheffer, Tetrahedron Lett., 32, 7675 (1991).

    Article  CAS  Google Scholar 

  44. D. R. Corbin, D. F. Eaton, and V. RamamurthyJ. Am. Chem. Soc., 110, 4848 (1988).

    Article  CAS  Google Scholar 

  45. Y. Wada, Y. Yoshizawa, and A. Morikawa, J. Chem. Soc., Chem. Commun., 319 (1990).

    Google Scholar 

  46. V. Ramamurthy, J. V Caspar, E. W. Kuo, D. R. Corbin, and D. F. EatonJ. Am. Chem. Soc., 114, 3882 (1992).

    Article  CAS  Google Scholar 

  47. J. V. Caspar, V. Ramamurthy, and D. R. Corbin, Coordination Chem. Rev., 97, 225 (1990).

    Article  CAS  Google Scholar 

  48. V. Ramamurthy, J. V. Caspar, D. R. Corbin, and D. F. Eaton, J. Photochem. Photobiol. A: Chemistry, 50, 157 (1989).

    Article  CAS  Google Scholar 

  49. M. Kasha, J. Chem. Phys., 20, 71 (1952);

    Article  CAS  Google Scholar 

  50. D. S. McClure, J. Chem. Phys., 17, 905 (1949).

    Article  CAS  Google Scholar 

  51. J. M. Larson and L. R. Sousa, J. Am. Chem. Soc., 100, 1942 (1978);

    Article  Google Scholar 

  52. S. Ghosh, M. Petrin, A. H. Maki, and L. R. Sousa, J. Chem. Phys., 87, 4315 (1987);

    Article  CAS  Google Scholar 

  53. S. Ghosh, M. Petrin, A. H. Maki, and L. R. Sousa, J. Chem. Phys., 88, 2913 (1988).

    Article  CAS  Google Scholar 

  54. V. Ramamurthy, J. V. Caspar, D. R. Corbin, B. D. Schlyer, and A. H. Maki, J. Phys. Chem., 94, 3391 (1990).

    Article  CAS  Google Scholar 

  55. G. Weinzierl and J. Friedrich, Chem. Phys. Lett., 80, 55 (1981).

    Article  Google Scholar 

  56. V. Ramamurthy, J. V Caspar, E. W. Kuo, D. R. Corbin, and D. F. Eaton, J. Am. Chem. Soc., 114, 3882 (1992);

    Article  CAS  Google Scholar 

  57. V. Ramamurthy, J. V Caspar, and D. R. Corbin, Tetrahedron Letters, 31, 1097 (1990).

    Article  CAS  Google Scholar 

  58. J. Saltiel, G. E. Khalil, and K. Schanze, Chem. Phys. Lett., 70, 233 (1980);

    Article  CAS  Google Scholar 

  59. D. F. Evans, J. Chem. Soc., 1351 (1957);

    Google Scholar 

  60. R. H. Dyck and D. S. McClure, J. Chem. Phys., 36, 2326 (1962);

    Article  CAS  Google Scholar 

  61. H. Gorner, J. Phys. Chem., 93, 1826 (1989).

    Article  Google Scholar 

  62. T. N. Ni, R. A. Caldwell, and L. A. Melton, J. Am. Chem. Soc., 111, 457 (1989);

    Article  CAS  Google Scholar 

  63. P. M. Crosby, J. M. Dyke, J. Metcalfe, A. J. Rest, K. Salisbury, and J. R. SodeauJ. Chem. Soc., Perkin II, 182 (1977).

    Google Scholar 

  64. G. Heinrich, G. Holzer, H. Blume, and D. Schulte-Frohlinde, Z. Naturforsch., 25b, 496 (1970);

    Google Scholar 

  65. D. F. Evans and J. N. Tucker, J. Chem. Soc., Faraday Trans. II, 68, 174 (1972).

    Article  CAS  Google Scholar 

  66. V. Ramamurthy and D. R. Sanderson, unpublished results.

    Google Scholar 

  67. D. O. Cowan and R. L. Drisko, Elements of Organic Photochemistry, Plenum, New York, p 435 (1976).

    Book  Google Scholar 

  68. V. Ramamurthy, D. R. Corbin, C. V. Kumar, and N. J. Turro, Tetrahedron Lett., 31, 47 (1990).

    Article  CAS  Google Scholar 

  69. B. Borecka, A. D. Gudmundsttir, G. Olovsson, V. Ramamurthy, J. R. Scheffer, and J. Trotter, J. Am. Chem. Soc., 116, 10322 (1994).

    Article  CAS  Google Scholar 

  70. D. Barthomeuf, J. Phys. Chem., 88, 42 (1984).

    Article  CAS  Google Scholar 

  71. For a review: A. M. Eremenko, Adsorbtsiya Adsorbenty, 8, 48 (1980).

    CAS  Google Scholar 

  72. S. Okamoto, H. Nishiguchi, and M. Anpo, Chem. Lett., 1009 (1992).

    Google Scholar 

  73. A. Corma, H. Garcia, S. Iborra, V. Marti, M. A. Miranda, and J. Primo, J. Am. Chem. Soc., 115, 2177 (1993).

    Article  CAS  Google Scholar 

  74. F. L. Cozens, H. Garcia, and J. C. Scaiano, J. Am. Chem. Soc., 115, 11134 (1993).

    Article  CAS  Google Scholar 

  75. N. J. Turro, Proc. Natl. Acad. Sci., 80, 609 (1983);

    Article  CAS  Google Scholar 

  76. G. F. Lehr and N. J. Turro, Tetrahedron, 37, 3411 (1981);

    Article  CAS  Google Scholar 

  77. N. J. Turro and B. Kraeutler, Acc. Chem. Res., 13, 369 (1980).

    Article  CAS  Google Scholar 

  78. P. S. Engel, J. Am. Chem. Soc., 92, 6074 (1970);

    Article  CAS  Google Scholar 

  79. W. K. Robins and R. H. Eastman, J. Am. Chem. Soc., 92, 6076 (1970).

    Article  Google Scholar 

  80. N. J. Turro and G. C. Weed, J. Am. Chem. Soc., 105, 1861 (1983).

    Article  CAS  Google Scholar 

  81. Z. Zhang, Ph.D Thesis, Columbia University (1989)

    Google Scholar 

  82. N. J. Turro and Z. Zhang, Tetrahedron Letters, 30, 3761 (1989).

    Article  CAS  Google Scholar 

  83. V. Ramamurthy, D. R. Corbin, and D. F. Eaton, J. Org. Chem. 55, 5269 (1990).

    Article  CAS  Google Scholar 

  84. D. R. Corbin, D. F. Eaton, and V. Ramamurthy, J. Org. Chem., 53, 5384 (1988);V. Ramamurthy, D. R. Corbin, D. F. Eaton, and N. J. Turro, Tetrahedron Lett., 30, 5833 (1989).

    Google Scholar 

  85. K. Pitchumani and V. Ramamurthy, unpublished results.

    Google Scholar 

  86. V. Ramamurthy and D. R. Sanderson, J. Phys. Chem., 97, 13380 (1993).

    Article  CAS  Google Scholar 

  87. V. Ramamurthy, Mol. Cryst. Liq. Cryst., 240, 53 (1994).

    Article  CAS  Google Scholar 

  88. V. Ramamurthy, D.R. Sanderson, and D.F. Eaton, J. Am. Chem. Soc., 115, 10438 (1993).

    Article  CAS  Google Scholar 

  89. Z. Zhang and N. J. Turro, unpublished results.

    Google Scholar 

  90. V. Ramamurthy and D. R. Sanderson, unpublished results.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ramamurthy, V., Turro, N.J. (1995). Photochemistry of Organic Molecules Within Zeolites: Role of Cations. In: Herron, N., Corbin, D.R. (eds) Inclusion Chemistry with Zeolites: Nanoscale Materials by Design. Topics in Inclusion Science, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0119-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0119-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4057-0

  • Online ISBN: 978-94-011-0119-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics