Skip to main content

On the Development of Microstructure in Collapsible Soils

Lessons from the Study of Recent Sediments and Artificial Cementation

  • Chapter
Genesis and Properties of Collapsible Soils

Part of the book series: NATO ASI Series ((ASIC,volume 468))

Abstract

Sensitive clays are part of the collapsible soils. The origin of sensitivity has been investigated for many years. Some new facets of the development of microstructure in fine-grained soils are presented in the light of work on recent sediments and from projects looking at lime stabilisation of muds and sensitive clays. Particular attention is given to the response of to the microstructure to stress changes with the introduction of the porosity index (In) and to the development of cementation as a major source of bonding strength. Finally, cementation and leaching are presented as the processes leading to greater collapsibility in sensitive clays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babineau, P. (1977) Minéralogie et stratigraphie de l’argile Champlain de St-Alban. M. Sc. Thesis, Department of Geology and Geological Engineering, Laval University, Québec, Canada.

    Google Scholar 

  2. Benmokrane, B., Ballivy, G., Lefebvre, G., Lebihan, J.-P., and Locat, J. (1993) Résistance au cisaillement sous faible consolidation et structuration des argiles marines. Revue française de géotechnique, 64, 31–43.

    Google Scholar 

  3. Bennett, R. H., Bryant, W.R., and Hulbert, M.H. (1991) Microstructure of Fine-Grained Sediments, from Mud to Shale. Springier-Verlag, New York, 582 p.

    Chapter  Google Scholar 

  4. Bennett, R.H., O’Brien, N.R., and Matthews, H.H. (1991) Determinants of clay shale microfabric signature: processes and mechanisms. In: Microstructure of Fine-Grained Sediments, from Mud to Shale. Bennett et al. Ed., Springier-Verlag, New York, pp.: 5–32.

    Chapter  Google Scholar 

  5. Bentley, S.P. (1979) Viscometric assessment of remoulded sensitive clays. Canadian Geotechnical Journal 16, 414–419.

    Article  Google Scholar 

  6. Bentley, S.P., Clark, N.J., and Smalley, I. (1980) Mineralogy of a Norwegian postglacial clay and some geotechnical implications. Canadian Mineralogist. 18: 535–547.

    Google Scholar 

  7. Berner, R. A. (1980) Early Diagenesis - A Theoretical Approach. Princeton University Press, Princeton, 241p.

    Google Scholar 

  8. Bjerrum, L. (1973) Problems of soil mechanics and construction on soft clays. Proceedings, 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, Vol. 3, pp. 111–159.

    Google Scholar 

  9. Choquette, M. (1988) La stabilisation à la chaux des sols argileux du Québec. Ph.D. Thesis, Department of Geology and Geological Engineering, Laval University, Québec, Canada.

    Google Scholar 

  10. Choquette, M., Bérubé, M.-A., and Locat, J. (1987). Mineralogical and microtextural changes associated with lime stabilisation of marine clays from Eastern Canada. Applied Clay Science 2, 215–232.

    Article  Google Scholar 

  11. Collins, K., and McGown, A. (1974) The form and function of microfabric in a variety of natural soils. Géotechnique 24, 223–254.

    Article  Google Scholar 

  12. Dadey, K.A., Leinon, M., and Silva, A.J. (1991) Anomalous stress history of sediments of the Northwest Pacific: the role of microstructure. In: Micro structure of Fine-Grained Sediments, from Mud to Shale. Springier-Verlag, New York, Bennett et al. Ed., pp.: 229–236.

    Chapter  Google Scholar 

  13. Delage, P., and Lefebvre, G. (1984) Study of the structure of a sensitive Champlain clay and its evolution during consolidation. Canadian Geotechnical Journal 21, 21–35.

    Article  Google Scholar 

  14. Guilbault, J.P. (1989) Foraminiferal distribution in the Central and Western parts of the Champlain Sea basin, Eastern Canada. Géographie physique et Quaternaire 43: 3–26.

    Article  Google Scholar 

  15. Hilaire-Marcel, C. (1977) Les isotopes du carbone et de l’oxygène dans les mers postglaciaires du Québec. Géographie physique et Quaternaire 31: 81–106.

    Article  Google Scholar 

  16. Kelly, W. E., Nacci, V. A., Wang, M. C. and Demars, K. R. (1974) Carbonate Cementation in Deep-Ocean Sediments. Journal of the Geotechnical Engineering Division, American Society of Civil Engineers 100, GT3, 383–386.

    Google Scholar 

  17. Krank, K. (1991) Interparticle grain size relationships resulting from flocculation. In: Microstructure of Fine-Grained Sediments, from Mud to Shale. Springler-Verlag, New York, Bennett et al. Ed., pp.: 125–130.

    Chapter  Google Scholar 

  18. Lapierre, C. (1989) Analyse de la perméabilité et de la porosité de l’argile de Louiseville. M. Sc. Thesis, Department of Civil Engineering, Laval University, Québec, Canada.

    Google Scholar 

  19. Lapierre, C., Leroueil, S., and Locat, J. (1990) Mercury intrusion and permeability of Louiseville clay. Canadian Geotehnical Journal 27, 761–773.

    Article  Google Scholar 

  20. Leroueil, S. (1988) Tenth Canadian Geotechnical Colloquium: Recent developments in consolidation of natural clays. Canadian Geotechnical Journal 25, 85–107.

    Article  Google Scholar 

  21. Leroueil, S., Magnan, J. P. and Tavenas, F. (1985) Remblais sur Argiles Molles. Technique et Documentation, Lavoisier, Paris, France, 342p.

    Google Scholar 

  22. Leroueil, S., Tavenas, F., and LeBihan, J.P. (1983) Propriétés caractéristiques des argiles de l’Est du Canada. Canadian Geotechnical Journal 20, 681–705.

    Article  Google Scholar 

  23. Leroueil, S. and Vaughan, P.R. (1990) The congruent effects of structure on the behaviour of natural soils. Géotechnique 40, 467–488.

    Article  Google Scholar 

  24. Lessard, G., and Mitchell, J.K. (1985) The causes and effects of aging in quick clays. Canadian Geotechnical Journal 22, 335–346.

    Article  Google Scholar 

  25. Locat, J. (1977) L’émersion des terres dans la région de Baie-des-Sables/Trois-Pistoles, Géographie Physique et Quaternaire 31, 297–306.

    Article  Google Scholar 

  26. Locat, J. (1982) Origine de la surconsolidation des argiles sensibles de l’Est du Canada. Ph. D. Thesis, Department of Civil Engineering, University of Sherbrooke, Québec, Canada, 512 p.

    Google Scholar 

  27. Locat, J. (1992) Viscosity, yield strength, and mudflow mobility for sensitive clays and other fine sediments. In: Geotechnique and Natural Hazards, Vancouver, pp.: 389–396.

    Google Scholar 

  28. Locat, J. (1994) Dix ans de recherche en géotechnique marine au fjord du Saguenay. Colloque sur le fjord du Saguenay, Rimouski, Pêches et Océans Canada, J.-M. Sévigny,Ed., 12 p.

    Google Scholar 

  29. Locat, J., Bérubé, M.-A., Chagnon, J.-Y. and Gélinas, P. (1985) The mineralogy of sensitive clays in relation to some engineering geology problems - an Overview. Applied Clay Science 1, 193–205.

    Article  Google Scholar 

  30. Locat, J., Bérubé, and Choquette, M. (1990) Laboratory investigation on the lime stabilization of sensitive clays: shear strength development. Canadian Geotechnical Journal 27, 294–304.

    Article  Google Scholar 

  31. Locat, J., and Demers, D. (1988) Viscosity, yield stress, remoudled shear strength, and liquidity index relationships for sensitive clays. Canadian Geotechnical Journal 25, 799–806.

    Article  Google Scholar 

  32. Locat, J., and Lefebvre, G. (1981) Étude de la formation des sédiments fins glaciolacustres du lac Barlow-Ojibway: le site de Matagami, Québec. Géographie physique et Quaternaire 35, 93–103.

    Article  Google Scholar 

  33. Locat, J., and Lefebvre (1985) The compressibility and sensitivity of an artificially sedimented clay soil: the Grande Baleine marine clay, Québec, Canada. Marine Geotechnology 6, 1–28.

    Article  Google Scholar 

  34. Locat, J. and Lefebvre, G. (1986) The Origin of Structuration of the Grande-Baleine Marine Sediments, Québec, Canada. Quaterly Journal of Engineering Geology 19, 365–374.

    Article  Google Scholar 

  35. Locat, J., Lefebvre, G. and Ballivy, G. (1984a) Mineralogy, chemistry, and physical properties interrelationships of some sensitive clays from Eastern Canada. Canadian Geotechnical Journal 21, 530–540.

    Article  Google Scholar 

  36. Locat, J., Lefebvre, G., and Ballivy, G. (1984b) Notes sur la minéralogie des séiments fins du lac Ojibway, en particulier ceux de la région de Matagami, Québec, Géographie Physique et Quaternaire, 37, 49–57.

    Article  Google Scholar 

  37. Locat, J., and Leroueil, S. (1988) Physicochemical and geotechnical characteristics of recent Saguenay Fjord sediments. Canadian Geotechnical Journal 25, 382–388.

    Article  Google Scholar 

  38. Locat, J., and Syvitski, J.P.M. (1991) Le fjord du Saguenay et le golfe du St-Laurent: étalons pour l’évaluation des changements globaux au Québec. Collection Environnement et Géologie 12, 309–318.

    Google Scholar 

  39. Loiselle, A., Massiera, M., and Sainani, U.R. (1971) A study of the cementation bounds of the sensitive clays of the Outardes River region. Canadian Geotechnical Journal, 8, 479–498.

    Article  Google Scholar 

  40. Martignoni, P. (1991) Évaluation de la thixotropie d’un sédiment argileux par viscosimétrie. Unpublished Research Report, Department of Geology and Geological Engineering, Laval University, Québec, Canada.

    Google Scholar 

  41. McRoberts, E.C. and Nixon, J.F. (1976) A theory of soil sedimentation. Canadian Geotechnical Journal 13, 294–310.

    Article  Google Scholar 

  42. Mesri, G., Rokhsar, A., and Bohar, B.F. (1975) Composition and compressibility of typical samples of Mexico City clay. Géotechnique 25, 527–554.

    Article  Google Scholar 

  43. Mitchell, J.K., 1976. Fundamentals of Soil Behavior. Wiley, New York, 422 p.

    Google Scholar 

  44. Mucci, A. and Edenborn, H. M. (1992) Influence of an organic-poor landslide deposit on the early diagenesis of iron and manganese in a coastal marine sediment. Geochimica et Cosmochimica Acta, 56, 3909–3921.

    Article  Google Scholar 

  45. Perret, D. (1995) Étude du développement de la résistance au cisaillement dans un sédiment récent. Ph. D. Thesis, Department of Geology and Geological Engineering, Laval University, Québec, Canada (in prep.).

    Google Scholar 

  46. Perret, D., Locat, J., and Leroueil, S. (1994) Strength development with burial in finegrained sediments from the Saguenay Fjord, Québec. Canadian Geotechnical Journal, 31, (in press).

    Google Scholar 

  47. Pierce, J.W. (1991) Microstructure of suspensates: from stream to shelf. In: Micro structure of Fine-Grained Sediments, from Mud to Shale. Springier-Verlag, New York, Bennett et al. Ed., pp.: 139–145.

    Chapter  Google Scholar 

  48. Pusch, R. (1970) Microstructural changes in soft quick clay at failure. Canadian Geotechnical Journal 7, 1–7.

    Article  Google Scholar 

  49. Pusch, R. (1973) Influence on salinity and organic matter on the formation of clay microstructure. Proceedings, International Symposium on Soil Structures, Gotenburg, pp. 161–175.

    Google Scholar 

  50. Pusch, R. (1982) Thixotropic stiffening of clay consolidated in the laboratory. Canadian Geotechnical Journal 19, 517–521.

    Article  Google Scholar 

  51. Quigley, R.M. (1980) Geology, mineralogy, and geochemistry of Canadian soft soils: a geotechnical perspective. Canadian Geotechnical Journal 17, 261–285.

    Article  Google Scholar 

  52. Quigley, R.M., and Thompson, C.D. (1966) The fabric of anisotropically consolidated sensitive marine clay. Canadian Geotechnical Journal 3, 61–73.

    Article  Google Scholar 

  53. Rashid, M. A. and Brown, J. D. (1975) Influence of marine organic compounds on the engineering properties of a remolded sediment. Engineering Geology 9, 141–154.

    Article  Google Scholar 

  54. Reimers, C. E. (1982) Organic matter in anoxic sediments off Central Peru: relations of porosity, microbial decomposition and deformation properties. Marine Geology 46, 175–197.

    Article  Google Scholar 

  55. Rhoads, D. C. (1974) Organism-sediment relations on the muddy sea floor. Oceanography and Marine Biology 12, 263–300.

    Google Scholar 

  56. Richards, A. F. (1976) Marine geotechnics of the Oslofjorden region. In Laurits Bjerrum Memorial Volume, N. Janbu, F. Jorstad, and B. Kjoernsli, (eds.), Norwegian Geotechnical Institute, Oslo, Norway, pp. 161–175.

    Google Scholar 

  57. Richards, A. F. (1984) Modelling and the consolidation of marine soils. In Seabed Mechanics, International Union of Theoritical and Applied Mechanics, B. Denness, (ed.), pp. 3–8.

    Chapter  Google Scholar 

  58. Schafer, C. T. and Smith, J. N. (1988) Evidence of the occurence and magnitude of terrestrial landslides in recent Saguenay Fjord sediments. In Natural and Man-Made Hazards, M. I. El-Sabh and T. S. Murty, (eds.), pp. 137–145.

    Chapter  Google Scholar 

  59. Silva, A. J. (1974) Marine geomechanics: overview and projections. In Deep-Sea Sediments, Physical and Mechanical Properties, A. L. Inderbitzen, (ed.), Plenum Press, New York, pp. 45–76.

    Chapter  Google Scholar 

  60. Skempton, A.W., and Northey, R.D. (1952) The sensitivity of clays. Géotechnique 3, 30–53.

    Article  Google Scholar 

  61. Söderblom, R. (1974) Organic matter in Swedish clays and its importance for quick clay formation. Proceedings No. 26, Swedish Geotechnical Institute, Stockholm, Sweden, 89p.

    Google Scholar 

  62. Saint-Gelais, D. (1990) La relation entre le blue de méthylène et l’eau de constitution dans les argiles du Québec. M. Sc. Thesis, Université Laval, Department of Geology and Geological Engineering, Québec, Canada.

    Google Scholar 

  63. Syvitski, J.P.M. (1991) The changing microfabric of suspended particulate matter - the fluvial to marine transition: flocculation, agglomeration, and pelletization. In: Microstructure of Fine-Grained Sediments, from Mud to Shale. Springler-Verlag, New York, Bennett eltal. Ed., pp.: 131–137.

    Chapter  Google Scholar 

  64. Syvitski, J. P. M., Burrell, D. C. and Skei, J. M. (1987) Fjords: Processes and Products, Springier-Verlag, New York, N. Y., 379p.

    Chapter  Google Scholar 

  65. Syvitski, J.P.M., and Schafer, C.T. (1994) Evidence for an earthquake-triggerred basin collapse in Saguenay Fjord. Sedimentology, in press.

    Google Scholar 

  66. Torrance, J.K. (1975) On the role of chemistry in the development and behavior of the sensitive marine clays of Canada and Scandinavia. Canadian Geotechnical Journal 12, 326–335.

    Article  Google Scholar 

  67. Torrance, J.K. (1983) Towards a general model of quick clay development. Sedimentology 30, 547–555.

    Article  Google Scholar 

  68. Torrance, J.K. (1987) Shear resistance of remoulded soils by viscometric and fall cone methods: a comparison for the Canadian sensitive clays. Canadian Geotechnical Journal 24, 318–322.

    Article  Google Scholar 

  69. Torrance, J.K. (1988) Mineralogy, porewater chemistry, and geotechnical behaviour of Champlain Sea and related sediments. In: N.R. Ed., The Late Quaternary Development of the Champlain sea Basin. Geological Association of Canada, Special Paper no. 35, pp.: 259–275.

    Google Scholar 

  70. Tremblay, H. (1994) Étude de la stabilisation physique, mécanique et chimique d’un sédiment inorganique à l’aide de la chaux. M.Sc. Thesis, Department of Geology and Geological Engineering, Laval University, Québec, Canada, 61 p.

    Google Scholar 

  71. Van Olphen, H. (1977) An Introduction to Clay Colloid Chemistry. John Wiley and sons, New York, NY, 318 p.

    Google Scholar 

  72. Vincent, J.-S., and Hardy, L. (1979) The evolution of great lakes Barlow and Ojibway, Québec and Ontario. Geological Survey of Canada Bulletin 316, 18p.

    Google Scholar 

  73. Wartel, S., Singh, S.P., and Faas, R.W. (1991) The nature and significance of gas-generated microvoids as “secondary” microfabric features in modern and pleistocene marine and estuarine sediments. In: Microstructure of Fine-Grained Sediments, from Mud to Shale. Springler-Verlag, New York, Bennett et al. Ed., pp.: 55–59

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Locat, J. (1995). On the Development of Microstructure in Collapsible Soils. In: Derbyshire, E., Dijkstra, T., Smalley, I.J. (eds) Genesis and Properties of Collapsible Soils. NATO ASI Series, vol 468. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0097-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0097-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4047-1

  • Online ISBN: 978-94-011-0097-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics