Skip to main content

Molecular Beam Epitaxy — Fundamental Growth Aspects and Selected Contributions to Physics and Applications of Low-Dimensional Semiconductor Structures

  • Chapter
Book cover Fabrication, Properties and Applications of Low-Dimensional Semiconductors

Part of the book series: NATO ASI Series ((ASHT,volume 3))

  • 205 Accesses

Abstract

The phrase “low-dimensional structures” was adopted to describe a wide range of man-made solid structures, in which the physical properties differ significantly from those of bulk solids because in at least one spatial direction the scale of the structure is very small [1]. The changes in the physical phenomena are so dramatic and the variety of possible structures is so large that low-dimensional structures form the basis for an important new branch of condensed matter physics [2]. In addition, the structures have a great potential in modern device technology, because their properties can be exploited for a whole new generation of electronic and optical devices based on the concept of wave function engineering [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a survey on the exciting development of this field see the Proceedings of the International Conferences on Modulated Semiconductors (MSS) published since 1985: Proc. MSS-2, Ed. H. Saki (North-Holland, Amsterdam, 1986); Surf. Sci. 174 (1986); Proc. MSS-3, Eds. A. Raymond and P. Voisin (Ed. Physique, Les Ulis, 1987) J. Physique 48, Colloque C5 (1987); Proc. MSS-4, Eds. L. L. Chang, R. Merlin, and D. C. Tsui (North-Holland, Amsterdam, 1990); Surf. Sci. 228 (1990); Proc. MSS-5, Eds. S. Hiyamizu and H. Nakashima (North-Holland, Amsterdam, 1992) Surf. Sci. 267 (1992); Proc. MSS-6, Eds. G. Abstreiter and E. Gornik (Pergamon, Elsevier, Exeter, GB, 1994); Solid State Electron. 37, 523 — 1344 (1994)

    Google Scholar 

  2. This development is best recognized from the Proceedings of the International Conferences on the Physics of Semiconductors (ICPS) published since 1990: Proc. ICPS-20, Eds. E. M. Anastassakis and J. D. Joannopoulos (World Scientific, Singapore, 1990); Proc. ICPS-21, Eds. P. Jiang and H.Z. Zheng (World Scientific, Singapore, 1992); Proc. ICPS-22, Ed. D.J. Lockwood (World Scientific, Singapore, 1994)

    Google Scholar 

  3. The concept of wavefunction or band-gap engineering was first proposed by H. Sakaki, Proc. Int. Symp. Foundations Quantum Mechanics, Adv. Microfabr. Microstruct. Phys., Eds. S. Kamefuchi, H. Ezawa, Y. Murayama, M. Namiki, S. Nomura, Y. Ohnuki, and T. Yajima (Phys. Soc. Jpn., Tokyo, 1984) p. 94; and subsequently exploited by F. Capasso, Science 235, 172 (1987)

    Google Scholar 

  4. A.Y. Cho and J.R. Arthur, Progr. Solid State Chem. 10, 157 (1975); K. Ploog, in Crystals, Growth, Properties, and Applications, Ed. H.C. Freyhardt (Springer-Verlag, Berlin, 1980) p. 73

    Article  Google Scholar 

  5. G.B. Stringfellow, Organometallic Vapor Phase Epitaxy: Theory and Practice (Academic Press, Boston, 1989)

    Google Scholar 

  6. W.T. Tsang, in VLSI Electronics: Microstructure Science, Ed. N.G. Einspruch (Academic Press, New York, 1989) Vol. 21, p. 255; M.B. Panish and H. Temkin, Annu. Rev. Mater. Sci. 19, 209 (1989)

    Google Scholar 

  7. A.C. Gossard, Treat. Mater. Sci. Technol. 24, 13 (1981)

    Google Scholar 

  8. K. Ploog, Angew. Chem. Int. Ed. Engl. 27, 593 (1988)

    Article  Google Scholar 

  9. L.L. Chang and K. Ploog, Eds., Molecular Beam Epitaxy and Heterostructures (Martinus Nijhoff, Dordrecht, 1985) NATO Adv. Sci. Inst. Ser. E 87, (1985)

    Google Scholar 

  10. B.A. Joyce, Rep. Progr. Phys. 48, 1637 (1985); H.W.M. Salemink and M.D. Pashley, Eds., Semiconductor Interfaces at the Sub-Nanometer Scale (Kluwer, Dordrecht, NL, 1993) NATO Adv. Sci. Inst. Ser. E., Vol. 243 (1993) and references therein.

    Article  CAS  Google Scholar 

  11. M.B. Panish and H. Temkin, Gas Source Molecular Beam Epitaxy: Growth and Properties of Phosphorus Containing III-V Heterostructures (Springer-Verlag, Berlin, 1993) Springer Ser.Mater. Sci. 26 (1993)

    Google Scholar 

  12. E.H.C. Parker, Ed., The Technology and Physics of Molecular Beam Epitaxy (Plenum Press, New York, 1985) 1–686; M. A. Herman and H. Sitter, Molecular Beam Epitaxy, Fundamentals and Current Status (Springer-Verlag, Berlin, 1989) Springer Ser. Mater. Sci. 2(1989)

    Google Scholar 

  13. C.T. Foxon and B.A. Joyce, Current Topics Mater. Sci. 7, 1 (1981)

    CAS  Google Scholar 

  14. C.R. Stanley, MC Holland, A.H. Kean, J.M. Chamberlin, R.T. Grimes, and M.B. Stanaway, J. Cryst, Growth 111, 14 (1991)

    Article  CAS  Google Scholar 

  15. E. Nottenburg, H.J. Bühlmann, M. Frei, and M. Ilegems, Appl. Phys. Lett. 44, 71 (1984)

    Article  CAS  Google Scholar 

  16. J. Maguire, R. Murray, R.C. Newman, R.B. Beal, and J.J. Harris, Appl. Phys. Lett. 50, 516 (1987)

    Article  CAS  Google Scholar 

  17. L. Gonzales, J.B. Clegg, D. Hilton, J.P. Gowers, C.T. Foxon, and B.A. Joyce, Appl. Phys. A 41, 237 (1986)

    Google Scholar 

  18. W.I. Wang, Surf. Sci. 174, 31 (1986); H. Nobuhara, I. Wada, and T. Fujii, Electron. Lett. 23, 35 (1987)

    Article  CAS  Google Scholar 

  19. M. Ilegems, J. Appl. Phys. 48, 1278 (1977)

    Article  CAS  Google Scholar 

  20. D.L. Miller and P.M. Asbeck, J. Appl. Phys. 57, 1816 (1985)

    Article  CAS  Google Scholar 

  21. J. Nagle, R.J. Malik, and D. Gershoni, J. Cryst. Growth 111, 264 (1991)

    Article  CAS  Google Scholar 

  22. H. Ito and T. Ishibashi, Jpn. J. Appl. Phys. 30, L944 (1991)

    Article  CAS  Google Scholar 

  23. C. Giannini, A. Fischer, C. Lange, K. Ploog, and L. Tapfer, Appl. Phys. Lett. 61, 183 (1992); A. Fischer and K.H. Ploog, Appl. Phys. A 57, 217 (1993)

    Article  CAS  Google Scholar 

  24. A survey on the application of RHEED is given in Reflection High-Energy Electron Diffraction and Reflection Imaging of Surfaces, Eds. P. K. Larsen and P. J. Dobson (Plenum Press, New York, 1988)

    Google Scholar 

  25. T. Sakamoto, H. Funabashi, K. Ohta, T. Nakagawa, N.J. Kawai, T. Kojima, and K. Bando, Superlatt. Microstruct. 1, 347 (1985)

    Article  CAS  Google Scholar 

  26. B.A. Joyce, P.J. Dobson, J.H. Neave, K. Woodbridge, J. Zhang, P.K. Larsen, and B. Böiger, Surf. Sci. 168, 423 (1986)

    Article  CAS  Google Scholar 

  27. B.A. Joyce, J. Zhang, J.H. Neave, and P.J. Dobson, Appl. Phys. A 45, 255 (1988)

    Google Scholar 

  28. D.E. Aspnes, IEEE J. Quantum Electron. QE-25, 1056 (1989)

    Article  Google Scholar 

  29. M.D. Pashley, K. Haberern, and J.M. Gaines, Appl. Phys. Lett. 58, 406 (1991)

    Article  CAS  Google Scholar 

  30. S. Dushman, in Scientific Foundations of Vacuum Technique, Ed. J.M. Laffarty (John Wiley, New York, 1962) p. 80

    Google Scholar 

  31. G.H. Davies, H.D. Shih, and W.T. Tsang, Eds., Chemical Beam Epitaxy and Related Growth Techniques (North-Holland, Amsterdam, 1990); G.H. Davies, J.S. Foord, and W.T. Tsang, Eds. Chemical Beam Epitaxy and Related Growth Techniques 1991 (North-Holland, Amsterdam, 1992)

    Google Scholar 

  32. M.B. Panish, J. Electrochem. Soc. 127, 2729 (1980)

    Article  CAS  Google Scholar 

  33. E. Veuhoff, W. Pletschen, P. Balk, and H. Lüth, J. Cryst. Growth 55, 30 (1981)

    Article  CAS  Google Scholar 

  34. A. Robertson, T.H. Chiu, W.T. Tsang, and J.E. Cunningham, J. Appl. Phys. 64, 877 (1988); DA. Andrews and G.J. Davies, J. Appl. Phys. 67, 3187 (1990)

    Article  CAS  Google Scholar 

  35. G.J. Davies, E.G. Scott, M.H. Lyons, M.A.Z. Rejman-Greene, and D.A. Davies, in Spectroscopy of Semiconductor Microstructures, Eds. G. Fasol, A. Fasolino, P. Lugli (Plenum Press, New York, 1989) NATO Adv. Sci. Inst. Ser. B 206, 45 (1989)

    Google Scholar 

  36. T. Yamada, E. Tokumitsu, K. Saito, T. Akatsuka, M. Miyauchi, M. Konagai, and K. Takahasi, J. Cryst. Growth 95, 145 (1989); M. Konagai, T. Yamada, T. Akatsuka, K. Saito, E. Tokumitsu, and K. Takahashi, J. Cryst. Growth 98, 167 (1989)

    Article  CAS  Google Scholar 

  37. Y. Horikoshi and M. Kawashima, J. Cryst. Growth 95, 17 (1989)

    Article  CAS  Google Scholar 

  38. F. Briones, L. Gonzales, and A. Ruiz, Appl. Phys. A 49, 729 (1989)

    Google Scholar 

  39. L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970)

    Article  CAS  Google Scholar 

  40. B. Hamilton and A.R. Peaker, Prog. Cryst. Growth Character. 19, 51 (1989)

    Article  CAS  Google Scholar 

  41. For a review on resonant tunneling see: L.L. Chang, E.E. Mendez, and C. Tejedor, Eds., Resonant Tunneling in Semiconductors, (Plenum Press, New York, 1991) NATO Adv. Sci. Inst. Ser. B, 277 (1991)

    Google Scholar 

  42. J. Feldmann, K. Leo, J. Shah, D.A.B. Miller, J.E. Cunnigham, T. Meier, G. von Plessen, A. Schulz, P. Thomas, and S. Schmitt-Rink, Phys. Rev. B 46, 7252 (1992); K. Leo, P. Haring Bolivar, F. Brüggemann, R. Schwedler, and K. Köhler, Solid State Commun. 84, 943 (1992)

    Google Scholar 

  43. For a review see: C. Weisbuch and B. Vinter, Quantum Semiconductor Structures (Academic Press, San Diego, 1991)

    Google Scholar 

  44. R. Dingle, in Festkörperprobleme XV, Ed. H.J. Queisser (Vieweg-Verlag, Braunschweig, 1975) p. 21

    Chapter  Google Scholar 

  45. G. Bastard, C. Delalande, M.H. Meynadier, P.M. Frijlink, and M. Voos, Phys. Rev. B 29, 7042 (1984)

    Google Scholar 

  46. C. Weisbuch, R. Dingle, A.C. Gossard, and W. Wiegmann, Inst. Phys. Conf. Ser. 56, 711 (1981); R.C. Miller, C.W. Tu, S.K. Sputz, and R.F. Kopf, Appl. Phys. Lett. 49, 1245 (1986)

    Google Scholar 

  47. For a detailed review on the properties of GaAs quantum wells see: E.O. Göbel and K. Ploog, Progr. Quantum Electron. 14, 289 (1990)

    Article  Google Scholar 

  48. M. Kohl, D. Heitmann, S. Tarucha, K. Leo, and K. Ploog, Phys. Res. B 39, 7736 (1989)

    Google Scholar 

  49. C. Warwick, W.Y. Yan, A. Ourmazd, and T.D. Harris, Appl. Phys. Lett. 56, 2666 (1990)

    Article  CAS  Google Scholar 

  50. K. Ploog, A. Fischer, L. Tapfer, and B.F. Feuerbacher, Appl. Phys. A 52, 135 (1991)

    Google Scholar 

  51. B.F. Feuerbacher, J. Kuhl, R. Eccleston, and K. Ploog, Solid State Commun. 74, 1279 (1990)

    Article  CAS  Google Scholar 

  52. F.O. Göbel, in Festkörperprobleme (Adv. Solid State Physics), Ed. U. Rössler, Vol. 30 (Pergamon-Vieweg, Braunschweig, 1990)

    Google Scholar 

  53. K. Bott, O. Heller, D. Rennhardt, S.T. Cundiff, P. Thomas, E.J. Mayer, G.O. Shmith, R. Eccleston, J. Kuhl, and K. Ploog, Phys. Rev. B 48, 17418 (1993)

    Google Scholar 

  54. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, and A.C. Burrus, Phys. Rev. Lett. 53, 2173 (1984); HJ. Polland, L. Schultheis, J. Kuhl, E.O. Göbel, and C.W. Tu, Phys. Rev. Lett. 55, 2610 (1985)

    Article  CAS  Google Scholar 

  55. J.A. Brum and G. Bastard, Phys. Rev. B 31, 3893 (1985)

    Google Scholar 

  56. R.T. Collins, K. von Klitzing, and K. Ploog, Phys. Rev. B 33, 4378 (1986)

    Google Scholar 

  57. S. Schmitt-Rink, D.S. Chemla, and D.A.B. Miller, Adv. Phys. 38, 89 (1989); R. Cingolani and K. Ploog, Adv. Phys. 40, 535 (1991)

    Article  CAS  Google Scholar 

  58. For a tutorial review see: D.A.B. Miller, Optics and Photonics News, pp. 7–15, Febr. 1990

    Google Scholar 

  59. M. Erman, Inst. Phys. Conf. Ser.91, 33 (1988); D.A.B. Miller, Opt. Quantum Electron. 22, S61 (1990)

    Google Scholar 

  60. J. Zucker, K.L. Jones, B.I. Miller and V. Koren, IEEE Photon. Technol. Lett., 2, 32 (1990)

    Article  Google Scholar 

  61. R. Dingle and C.H. Henry, Quantum Effects in Heterostructure Lasers, U.S. Patent 3982207, 21 September 1976

    Google Scholar 

  62. W.T. Tsang, Appl. Phys. Lett. 34, 473 (1979)

    Article  CAS  Google Scholar 

  63. G.P. Agarwal and N.K. Dutta, Semiconductor Lasers (Van Nostrand-Reinhold, New York, 1993)

    Google Scholar 

  64. J.D. Ralston, S. Weisser, K. Eisele, R.E. Sah, E.C. Larkins, J. Rosenzweig, J. Fleiβner, and K. Bender, IEEE Photon. Technol. Lett. 6, …. (1994)

    Google Scholar 

  65. J.C. Jewell, J.P. Harbison, A. Scherer, Y.H. Lee, and L.T. Florez, IEEE J. Quant. Electron. QE-27, 1332 (1991); R.S. Geels, S.W. Corzine, and LA. Coldren, IEEE J. Quant. Electron. QE-27, 1359 (1991)

    Article  Google Scholar 

  66. R. Hey, A. Paraskevopolous, J. Sebastian, B. Jenichen, M. Höricke, and S. Westphal, Inst. Phys. Conf. Ser. 136, 821 (1994)

    CAS  Google Scholar 

  67. Y. Yamamoto, G. Björk, H. Heitmann, and R. Horowicz, in Optics of Semiconductor Nanostructures, Eds. F. Henneberger, S. Schmitt-Rink, and E.O. Göbel (Akademie-Verlag, Berlin, 1993) p. 547

    Google Scholar 

  68. G. Rempe, Contemp. Phys. 34, 119 (1993)

    Article  CAS  Google Scholar 

  69. R. Dingle, H.L. Störmer, A.C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978); H.L. Störmer, R. Dingle, A.C. Gossard, W. Wiegmann, and R.-A. Logan, Int. Phys. Conf. Ser. 43, 557 (1989)

    Article  CAS  Google Scholar 

  70. Proc. Int. Conf. Electron. Prop. 2-Dim. Syst. (EP2-DS), Surf. Sci., Vols. 58 (1976), 73 (1978), 98 (1980), 113 1982), 142 (1984), 170 (1986), 196 (1988), 229 (1990), 267 (1992), 305 (1994)

    Google Scholar 

  71. For reviews on the development of high electron mobility transistors see: N.T. Linh, in Semiconductors and Semimetals. Vol. 24, Eds. R.K. Willardson, A.C. Beer (Academic Press, New York, 1987) p. 203; M. Abe, T. Mimura, K. Nishinski, A. Shibatomi, M. Kobayashi, and T. Misugi, in Semiconductors and Semimetals, Vol. 24, Eds. R.K. Willardson, A.C. Beer (Academic Press, New York, 1987) p. 249

    Google Scholar 

  72. A compilation of papers dealing with heterostructure field-effect transistors can be found in Very High Speed Integrated Circuits: Heterostructure, Ed. T. Ikoma, Vol. 30 of Semiconductors and Semimetals, Eds. R.K. Willardson, A.C. Beer (Academic Press, New York, 1990) and in High Speed Heterostructure Devices, Eds. RA. Kiehl, T.C.L.G. Sollner, Vol. 41 of Semiconductors and Semimetals, Eds. R.K. Willardson, A.C. Beer, E.R. Weber (Academic Press, New York, 1994)

    Google Scholar 

  73. G.E. Stillman and C.M. Wolfe, Thin Solid Films 31, 69 (1976); T. Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982)

    Article  CAS  Google Scholar 

  74. H.L. Stürmer, Surf. Sci. 132, 519 (1983)

    Article  Google Scholar 

  75. G. Abstreiter and K. Ploog, Phys. Rev. Lett. 42, 1308 (1979); H.L. Störmer, R. Dingle, A.C. Gossard, W. Wiegmann, and M.D. Sturge, Solid State Commun. 29, 705 (1979)

    Article  CAS  Google Scholar 

  76. H.L. Störmer, A. Pinczuk, A.C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 38, 691 (1981)

    Article  Google Scholar 

  77. L.N. Pfeiffer, K.W. West, H.L. Störmer, and K.W. Baldwin, Appl. Phys. Lett. 55, 1888 (1989); C.T. Foxon, J.J. Harris, D. Hilton, J. Hewett, and C. Roberts, Semicond. Sci. Technol. 4, 582 (1989); T. Saku, Y. Hirayama, and Y. Horikoshi, Jpn. J. Appl. Phys. 30, 902 (1991)

    Article  CAS  Google Scholar 

  78. F. Stern, Appl. Phys. Lett. 43, 974 (1983)

    Article  CAS  Google Scholar 

  79. A.G. Davies, J.E.F. Frost, D.A. Ritchie, D.C. Peacock, R. Newbury, F.H. Linfield, M. Pepper, and G.C.C. Jones, J. Cryst. Growth 111, 318 (1991)

    Article  CAS  Google Scholar 

  80. K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980); K. von Klitzing, Rev. Mod. Phys. 58, 519 (1986)

    Article  Google Scholar 

  81. A compilation of articles on precision measurements of the quantized Hall resistence is given in: IEEE Trans. Instrum. Meas. IM-34, p. 301 ff. (1986); Metrologica 22, p. 256 ff. (1986)

    Google Scholar 

  82. D.C. Tsui, H.L. Störmer, and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)

    Article  CAS  Google Scholar 

  83. T. Chakraborty and P. Pietiläinen, Eds., The Fractional Quantum Hall Effect (Springer-Verlag, New York, 1988)

    Google Scholar 

  84. A. Hartland, Contemp. Phys. 29, 477 (1988)

    Article  CAS  Google Scholar 

  85. R.E. Prange and S.M. Girvin, Eds., The Quantum Hall Effect (Springer-Verlag, New York, 1990); J. Haydu, Ed., Introduction to the Theory of the Integer Quantum Hall Effect (VCH, Weinheim, 1994)

    Google Scholar 

  86. R.B. Laughlin, Phys. Rev. B 23, 5632 (1981); R.B. Laughlin, Springer Ser. Solid State Sci. 59, 272, 288 (1984)

    Google Scholar 

  87. B.I. Halperin, Phys. Rev. B 25, 2185 (1982)

    Google Scholar 

  88. M. Büttiker, Phys. Rev. B 38, 9375 (1988); for a review on experimental work related to edge states see: RJ. Haug, Semicond. Sci. Technol. 8, 131 (1993)

    Google Scholar 

  89. D.C. Tsui, H.L. Störmer, and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)

    Article  CAS  Google Scholar 

  90. R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

    Article  Google Scholar 

  91. F.D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983)

    Article  CAS  Google Scholar 

  92. I.V. Kukushkin, K. von Klitzing, K. Ploog, and V.B. Timofeev, Phys. Rev. B 40, 7788 (1989)

    Google Scholar 

  93. H. Buhmann, W. Joss, K. von Klitzing, I.V. Kukushkin, G. Martinez, A.S. Plaut, K Ploog, and V.B. Timofeev, Phys. Rev. Lett. 65, 1056 (1990); ibd. 66, 1246 (1991)

    Article  CAS  Google Scholar 

  94. E.I. Rashba, V.M. Apalkov, and M.E. Portnoi, J. Lumin. 60 & 61, 782 (1994)

    Article  Google Scholar 

  95. M. Abe, T. Mimura, K. Nishiuchi, and N. Yokoyama, in VLSI Electronics: Microstructure Science. Vol. 11, Ed. N.G. Einspruch (Academic Press, New York, 1985) p. 333; T.J. Drummond, W.T. Masselink, and H. Morkoç, Proc. IEEE 74, 773 (1986); N.T. Link, in Semiconductors and Semimetals, Vol. 24, Eds. R.K. Willardson, A.C. Beer (Academic Press, New York, 1987) p. 203

    Google Scholar 

  96. K. Yokoyama, J. Appl. Phys. 63, 938 (1988)

    Article  Google Scholar 

  97. A.N. Lepore, M. Levy, R. Tiberio, P. Tasker, H. Lee, E. Wolf, L.F. Eastman, and E. Kohn, Electron. Lett. 24, 364 (1988)

    Article  Google Scholar 

  98. K. Kondo, J. Saito, T. Igarashi, K Naubu, and T. Ishikawa, J. Cryst. Growth 95, 309 (1989); T. Sonada, M. Ito, M. Kobiki, K Hayashi, S. Takamiya, and S. Mitsui, J. Cryst. Growth 95, 317 (1989)

    Article  Google Scholar 

  99. T. Ikoma, Ed., Very High Speed Integrated Circuits, in Semiconductors and Semimetals, Eds. R.K. Willardson, A.C. Beer (Academic Press, Boston, 1990) Vols. 29 and 30

    Google Scholar 

  100. P.C. Chao, M.S. Shur, R.C. Tiberio, K.H.G. Duh (?), P.M. Smith, J.M. Ballingall, P. Ho, and A.A. Jabra, IEEE Trans. Electron. Devices ED-36, 461 (1989)

    Article  Google Scholar 

  101. L.D. Nguyen, A.S. Brown, M.A. Thomson, and L.M. Jelloian, IEEE Trans. Electron Devices ED-39, 2007 (1992)

    Article  Google Scholar 

  102. R. de L. Kronig and W.J. Penny, Proc. R. Soc. A 130, 499 (1930)

    Google Scholar 

  103. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Editions de Physique, Les Ulis, 1988)

    Google Scholar 

  104. P.S. Jung, J.M. Jacob, J.H. Song, Y.C. Chang, and C.W. Tu, Phys. Rev. B 40, 6454 (1989)

    Google Scholar 

  105. K. Fujiwara, N. Tsukada, T. Nakayama, and T. Nishino, Solid State Commun. 69, 63 (1989); K. Fujiwara and K. Ploog, unpublished results

    Article  CAS  Google Scholar 

  106. S. Tarucha and K. Ploog, Phys. Rev. B 39, 5353 (1989)

    Google Scholar 

  107. J. Bleuse, G. Bastard, and P. Voisin, Phys. Rev. Lett. 60, 220 (1988)

    Article  CAS  Google Scholar 

  108. E.E. Mendez, F. Agullo-Rueda, and J.M. Hong, Phys. Rev. Lett. 60, 2426 (1988)

    Article  CAS  Google Scholar 

  109. K. Fujiwara, H. Schneider, R. Cingolani, and K. Ploog, Solid State Commun. 72, 935 (1989)

    Article  CAS  Google Scholar 

  110. H. Schneider, K. Fujiwara, H.T. Grahn, K. von Klitzing, and K. Ploog, Appl. Phys. Lett. 56, 605 (1990)

    Article  CAS  Google Scholar 

  111. For a review see: J. Feldmann, in Festkörperprobleme (Adv. Solid State Phys.), Vol. 32, Ed. U. Rössler (Vieweg, Braunschweig, 1992) p. 81

    Google Scholar 

  112. For a review see: H.G. Roskos, in Festkörperprobleme (Adv. Solid State Phys.), Vol. 34, Ed. R. Helbig (Vieweg, Braunschweig, 1994) p. …

    Google Scholar 

  113. K. Ploog, Phys. Scr. T 19, 136 (1987)

    Article  Google Scholar 

  114. R. Cingolani, K. Ploog, G. Scamarcio, and L. Tapfer, Opt. Quantum Electron. 22, S 201 (1990)

    CAS  Google Scholar 

  115. N.J. Pulsford, R.J. Nicholas, P. Dawson, K.J. Moore, G. Duggan, and C.T. Foxon, Phys. Rev. Lett. 63, 2284 (1989)

    Article  CAS  Google Scholar 

  116. M.H. Meynadier, R.E. Nahory, J.M. Worlock, M.C. Tamargo, J.L. de Miguel, and M.D. Sturge, Phys. Rev. Lett. 60, 1338 (1988)

    Article  CAS  Google Scholar 

  117. E.O. Göbel, R. Fischer, G. Peter, W.W. Rühle, J. Nagle, and K. Ploog, in Optical Switching in Low-dimensional Systems, Eds. H. Haug and L. Banyai (Plenum Press, New York, 1989) NATO Adv. Sci. Inst. Ser. B 194, 331 (1989)

    Chapter  Google Scholar 

  118. J. Feldmann, R. Sattmann, E.O. Göbel, J. Kuhl, J. Hebung, K. Ploog, R. Muralidharan, P. Dawson, and C.T. Foxon, Phys. Rev. Lett. 61, 1892 (1989); J. Feldmann, J. Nunnenkamp, G. Peter, E.O. Göbel, J. Kuhl, K. Ploog, P. Dawson, C.T. Foxon, Phys. Rev. B 42, 5809 (1990)

    Article  Google Scholar 

  119. J. Feldmann, E.O. Göbel, and K. Ploog, Appl. Phys. Lett. 57, 1520 (1990)

    Article  CAS  Google Scholar 

  120. For recent reviews on strained-layer heterostructures see: R.M. Biefeld, Ed., Compound Semiconductor Strained-layer Superlattices (Trans. Tech. Zürich, 1989); H. Morkoç, B. Sverdlov, and G.B. Gao, Proc. IEEE 81, 493 (1993)

    Google Scholar 

  121. A.R. Adams, Electron. Lett. 22, 249 (1986)

    Article  Google Scholar 

  122. E. Yablonovitch and E.O. Kane, IEEE, J. Lightwave Technol. LT-4, 504 (1986); ibd. LT-6, 1292 (1988)

    Article  CAS  Google Scholar 

  123. The impressive progress in this field has recently been compiled in the Special Issue on Strained-Layer Optoelectronic Materials and Devices, Guest Editors J.J. Coleman, B.I. Miller, IEEE J. Quantum Electron. QE-30, 348–590 (1994)

    Google Scholar 

  124. P.J.A. Thijs, F.F. Tiemeijer, J.J.M. Binsma, and T. van Dongen, IEEE J. Quantum Electron. QE-30, 477 (1994)

    Google Scholar 

  125. E. Bauer, Z. Krist. 110, 372 (1958)

    Article  CAS  Google Scholar 

  126. J.A. Venables, G.D.T. Spiller, and M. Hanbücken, Rep. Progr. Phys. 47, 399 (1984)

    Article  Google Scholar 

  127. R. Bruinsma and A. Zangwill, Europhys. Lett. 4, 729 (1987)

    Article  CAS  Google Scholar 

  128. E. Bauer and J.H. van der Merwe, Phys. Rev. B 33, 3657 (1986)

    Google Scholar 

  129. B.G. Orr, D. Kessler, C.W. Snyder, and L.M. Sander, Europhys. Lett. 19, 33 (1992)

    Article  CAS  Google Scholar 

  130. D.J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990)

    Article  CAS  Google Scholar 

  131. P.R. Berger, K. Chang, P.K. Bhattacharya, J. Singh, and K.K. Bajaj, Appl. Phys. Lett. 53, 684 (1988)

    Article  CAS  Google Scholar 

  132. N. Grandjean and J. Massies, Semicond. Sci. Technol. 8, 2031 (1993)

    Article  CAS  Google Scholar 

  133. M. Copel, M.C. Reuter, E. Kaxiras, and R.M. Tromp, Phys. Rev. Lett. 63, 632 (1989)

    Article  CAS  Google Scholar 

  134. R.M. Tromp and M.C. Reuter, Phys. Rev. Lett. 68, 954 (1992)

    Article  CAS  Google Scholar 

  135. K. Sakamoto, K. Miki, T. Sakamoto, H. Yamaguchi, H. Oyanagi, H. Matsukata, and K. Kyoya, Thin Solid Films 222, 112 (1992)

    Article  CAS  Google Scholar 

  136. E. Tournié and K.H. Ploog, J. Cryst. Growth 135, 97 (1994)

    Article  Google Scholar 

  137. E. Tournié, A. Trampert, and K. Ploog, Europhys. Lett.

    Google Scholar 

  138. C.W. Snyder, B.G. Orr, D. Kessler, and L.M. Sander, Phys. Rev. Lett. 66, 3032 (1991)

    Article  CAS  Google Scholar 

  139. R. Hull and A. Fischer-Colbrie, Appl. Phys. Lett. 50, 851 (1987)

    Article  CAS  Google Scholar 

  140. S. Guha, A. Madhukar, and K.C. Rajkumar, Appl. Phys. Lett. 57, 2110 (1990)

    Article  CAS  Google Scholar 

  141. J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974)

    CAS  Google Scholar 

  142. J.H. van der Merwe and C.A. Ball, in: Epitaxial Growth, Part B, Ed. J.W. Matthews (Academic, New York, 1975) p. 493

    Google Scholar 

  143. R. People and J.C. Bean, Appl. Phys. Lett. 47, 322 (1985); 49, 229 (1986)

    Article  CAS  Google Scholar 

  144. J.Y. Tsao, B.W. Dodson, S.T. Picraux and D.M. Cornelison, Phys. Rev. Lett. 59, 2455 (1987)

    Article  CAS  Google Scholar 

  145. For a recent review see, e.g., E.A. Fitzgerald, Mater. Sci. Rept. 7, 87 (1991)

    Article  CAS  Google Scholar 

  146. C. Ratsch and A. Zangwill, Surf. Sci. 293, 123 (1993)

    Article  CAS  Google Scholar 

  147. J.C. Bean, L.C. Feldman, A.T. Fiory, S. Nakahara and I.K. Robinson, J. Vac. Sci. Technol. A2, 436 (1984)

    Google Scholar 

  148. C.W. Snyder, J.F. Mansfield and B.G. Orr, Phys. Rev. B 46, 9551 (1992)

    Google Scholar 

  149. P.G. de Gennes, Rev. Mod. Phys. 57, 841 (1985)

    Google Scholar 

  150. N. Grandjean, J. Massies, and V.H. Etgens, Phys. Rev. Lett. 69, 796 (1992)

    Article  CAS  Google Scholar 

  151. N. Grandjean, PhD thesis, Université de Nice-Sophia Antipolis (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ploog, K.H. (1995). Molecular Beam Epitaxy — Fundamental Growth Aspects and Selected Contributions to Physics and Applications of Low-Dimensional Semiconductor Structures. In: Balkanski, M., Yanchev, I. (eds) Fabrication, Properties and Applications of Low-Dimensional Semiconductors. NATO ASI Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0089-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0089-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4043-3

  • Online ISBN: 978-94-011-0089-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics