Skip to main content

Crop physiology of potato (Solanum tuberosum): responses to photoperiod and temperature relevant to crop modelling

  • Chapter
Potato Ecology And modelling of crops under conditions limiting growth

Part of the book series: Current Issues in Production Ecology ((CIPE,volume 3))

Abstract

This chapter describes the complex effects of photoperiod and temperature on the behaviour of potato crops. Short days and low temperatures reduce branching and the number of leaves per stem, but increase the size of individual leaves. Short days also increase specific leaf area and photosynthesis per unit of leaf weight. High temperatures increase specific leaf area, but reduce photosynthesis and may shorten longevity of individual leaves.

Long days and high temperatures delay stolon and tuber initiation, delay and reduce partitioning of dry matter to the tubers and also reduce absolute maximum tuber bulking rates. These effects result in low harvest indices. A delay of tuber formation, however, may stimulate final yield when the growing season is sufficiently long to profit from the increased duration of ground cover.

Effects of photoperiod extension with full light are usually smaller than those with dim light. Short or partial exposure to low or high temperature may induce specific responses of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almekinders C J M, Struik P C (1994) Photothermal response of sympodium development and flowering in potato (Solanum tuberosum L.) under controlled conditions. Netherlands Journal of Agricultural Science 42:311–329.

    Google Scholar 

  • Basu P S, Minhas J S (1991) Heat tolerance and assimilate transport in different potato genotypes. Journal of Experimental Botany 42:861–866.

    Article  CAS  Google Scholar 

  • Ben Khedher M, Ewing E E (1985) Growth analyses of eleven potato cultivars grown in the greenhouse under long photoperiods with and without heat stress. American Potato Journal 62:537–554.

    Article  Google Scholar 

  • Bennett S M, Tibbitts T W, Cao W (1991) Diurnal temperature fluctuation effects on potatoes grown with 12 hr photoperiods. American Potato Journal 68:81–86.

    Article  PubMed  CAS  Google Scholar 

  • Benoit G R, Stanley C D, Grant W J, Torrey D B (1983) Potato top growth as influenced by temperatures. American Potato Journal 60:489–501.

    Article  Google Scholar 

  • Bodlaender K B A (1963) Influence of temperature, radiation, and photoperiod on development and yield. Pages 199–210 in Ivins J D, Milthorpe F L (Eds.) Growth of the Potato. Butterworths, London, UK.

    Google Scholar 

  • Bodlaender K B A, Lugt C, Marinus J (1964) The induction of second-growth in potato tubers. European Potato Journal 7:57–71.

    Article  Google Scholar 

  • Borah M N, Milthorpe F L (1962) Growth of the potato as influenced by temperature. Indian Journal of Plant Physiology 5:53–72.

    Google Scholar 

  • Burt R L (1964) Influence of short periods of low temperature on tuber initiation in the potato. European Potato Journal 7:197–208.

    Article  Google Scholar 

  • Burton W G (1972) The response of the potato plant to temperature. Pages 217–233 in Rees A R, Kockahull K E, Hand D W, Hurd G R (Eds.) The Crop Processes in Controlled Environments. Academic Press, London, UK.

    Google Scholar 

  • Cao W, Tibbitts T W (1991) Physiological response in potato plants under continuous irradiation. Journal of the American Society for Horticultural Science 116:525–527.

    PubMed  CAS  Google Scholar 

  • Cutter E G (1992) Structure and development of the potato plant. Pages 65–161 in Harris P M (Ed.) The Potato Crop. 2nd Edition. Chapman & Hall, London, UK.

    Chapter  Google Scholar 

  • Dwelle R B, Kleinkopf G E, Pavek J J (1981) Stomatal conductance and gross photosynthesis of potato (Solanum tuberosum L.) as influenced by irradiance, temperature and growth stage. Potato Research 24:49–59.

    Article  Google Scholar 

  • Edmundson W C (1941) Response of several varieties of potatoes to different photoperiods. American Potato Journal 18:100–112.

    Article  Google Scholar 

  • Engels Ch (1983) Wachstumsrate der Knollen von Solanum tuberosum Var. Ostara in Abhängigkeit von exogenen und endogenen Faktoren -Konkurrenz zwischen Einzelknollen um Assimilate -. Dissertation der Fakultät Pflanzenproduktion der Universität Hohenheim Stuttgart-Hohenheim, Germany.

    Google Scholar 

  • Ewing E E (1978) Critical photoperiods for tuberization: a screening technique with potato cuttings. American Potato Journal 55:43–53.

    Article  Google Scholar 

  • Ewing E E (1985) Cuttings as simplified models of the potato plant. Pages 154–207 in Li P H (Ed.) Potato Physiology. Academic Press Inc., Orlando, USA.

    Google Scholar 

  • Ewing E E (1990) Induction of tuberization in potato. Pages 25–41 in Vayda M E, Park W D (Eds.) The Molecular and Cellular Biology of the Potato. CAB International, Redwood Press, Melksham, UK.

    Google Scholar 

  • Ewing E E, Struik P C (1992) Tuber formation in potato: induction, initiation, and growth. Horticultural Reviews 14:89–198.

    Google Scholar 

  • Firman D M, O’Brien P J, Allen E J (1991) Leaf and flower initiation in potato (Solanum tuberosum) sprouts and stems in relation to number of nodes and tuber initiation. Journal of Agricultural Science, Cambridge 117:61–74.

    Article  Google Scholar 

  • Firman D M, O’Brien P J, Allen E J (1992) Predicting the emergence of potato sprouts. Journal of Agricultural Science, Cambridge 118:55–61.

    Article  Google Scholar 

  • Haynes K G, Haynes F L, Swallow W H (1988) Temperature and photoperiod effects on tuber production and specific gravity in diploid potatoes. HortScience 23:562–565.

    Google Scholar 

  • Helder J, Miersch O, Vreugdenhil D, Sembdner G (1993) Occurrence of hydroxylated jasmonic acids in leaflets of Solanum demissum plants grown under long-and short-day conditions. Physiologia Plantarum 88:647–653.

    Article  CAS  Google Scholar 

  • Hiller L K, Koller D C, Thornton R E (1985) Physiological disorders of potato tubers. Pages 389– 455 in Li P H (Ed.) Potato Physiology, Academic Press, Orlando, USA.

    Google Scholar 

  • Ingram K T, McCloud D E (1984) Simulation of crop growth and development. Crop Science 24:21–27.

    Article  Google Scholar 

  • Jefferies R H, MacKerron D K L (1987) Thermal time as a non-destructive method of estimating tuber initiation in potatoes. Journal of Agricultural Science, Cambridge 108:249–252.

    Article  Google Scholar 

  • Kahn B A, Ewing E E, Senesac A H (1983) Effects of leaf age, leaf area, and other factors on tuberization of cuttings from induced potato (Solanum tuberosum) shoots. Canadian Journal of Botany 61:3193–3201.

    Article  Google Scholar 

  • Kooman P L, Haverkort A J (1995) Modelling development and growth of the potato crop influenced by temperature and daylength: LINTUL-POTATO. Pages 41–60 in Haverkort A J, MacKerron D K L (Eds.) Ecology and Modelling of Potato Crops under Conditions Limiting Growth. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Kopetz L M, Steineck O (1954) Photoperiodische Untersuchungen an Kartoffelsämlingen. Züchter 24:69–77.

    Google Scholar 

  • Krauss A, Marschner H (1984) Growth rate and carbohydrate metabolism of potato tubers exposed to high temperatures. Potato Research 27:297–303.

    Article  CAS  Google Scholar 

  • Krug H (1960a) Zum photoperiodischen Verhalten einiger Kartoffelsorten. I. Teil. European Potato Journal 3:47–79.

    Article  Google Scholar 

  • Krug H (1960b) Zum photoperiodischen Verhalten einiger Kartoffelsorten. II. Teil. European Potato Journal 3:107–136.

    Article  Google Scholar 

  • Ku S B, Edwards G E, Tanner C B (1977) Effects of light, carbon dioxide, and temperature on photosynthesis, oxygen inhibition of photosynthesis, and transpiration in Solanum tuberosum. Plant Physiology 59:868–872.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen J H, Ewing E E (1990) Changes in tuberization and assimilate partitioning in potato (Solanum tuberosum) during the first 18 days of photoperiod treatment. Annals of Botany 66:457–464.

    Google Scholar 

  • Lorenzen J H, Ewing E E (1992) Starch accumulation in potato (Solanum tuberosum) leaves during the first 18 days of photoperiod treatment. Annals of Botany 69:481–486.

    CAS  Google Scholar 

  • Lugt C, Bodlaender K B A, Goodijk G (1964) Observations on the induction of second-growth in potato tubers. European Potato Journal 7:219–227.

    Article  Google Scholar 

  • Madec P, Perennec P (1962) Les relations entre l’induction de la tubérisation et la croissance chez la plante de pomme de terre (Solanum tuberosum L.). Annales de Physiologie Végétale 4:5–84.

    Google Scholar 

  • Manrique L A, Hodges T (1989) Estimation of tuber initiation in potatoes grown in tropical environments based on different methods of computing thermal time. American Potato Journal 66:425–436.

    Article  Google Scholar 

  • Marinus J, Bodlaender K B A (1975) Response of some potato varieties to temperature. Potato Research 18:189–204.

    Article  Google Scholar 

  • Mendoza H A, Haynes F L (1977) Heritance of tuber initiation in tuber bearing Solanum as influenced by photoperiod. American Potato Journal 54:243–252.

    Article  Google Scholar 

  • Menzel C M (1983) Tuberization in potato (Solanum tuberosum cultivar Sebago) at high temperatures: interaction between shoot and root temperatures. Annals of Botany 52:65–70.

    Google Scholar 

  • Midmore D J (1984) Potato (Solanum spp.) in the hot tropics. 1. Soil temperature effects on emergence, plant development and yield. Field Crops Research 8:255–271.

    Article  Google Scholar 

  • Midmore D J, Mendoza H A (1984) Improving adaptation of the potato (Solanum spp.) to hot climates -some physiological considerations. Pages 457–464 in Proc. 6th Symposium of the International Society of Tropical Root Crops, International Potato Center, Lima, Peru.

    Google Scholar 

  • Midmore D J, Prange R K (1991) Sources of heat tolerance amongst potato cultivars, breeding lines, and Solanum species. Euphytica 55:235–245.

    Article  Google Scholar 

  • Mohabir G, John P (1988) Effect of temperature on starch synthesis in potato tuber tissue and in amyloplasts. Plant Physiology 88:1222–1228.

    Article  PubMed  CAS  Google Scholar 

  • Moll A, Henninger W (1978) Genotypische Photosyntheserate von Kartoffeln und ihre mögliche Rolle für die Ertragsbildung. Photosynthetica 12:51–61.

    CAS  Google Scholar 

  • Mosille E A W (1985) Der Einfluss verschiedener Kombinationen von Wurzelraumtemperaturen und Tageslängen auf Wachstum und Ertrag der Kartoffelpflanze (Solanum tuberosum L.). Thesis Institut für Nutzpflanzenforschung -Acker-und Pflanzenbau -der Technischen Universität Berlin, Berlin, Germany.

    Google Scholar 

  • Reynolds M P, Ewing E E (1989) Effects of high air and soil temperature stress on growth and tuberization in Solanum tuberosum. Annals of Botany 64:241–247.

    Google Scholar 

  • Reynolds M P, Ewing E E, Owens T G (1990) Photosynthesis at high temperature in tuber-bearing Solanum species. Plant Physiology 93:791–797.

    Article  PubMed  CAS  Google Scholar 

  • Sale P M J (1979) Growth of potatoes (Solanum tuberosum L.) to the small tuber stage as related to soil temperature. Australian Journal of Agricultural Research 30:667–675.

    Google Scholar 

  • Scaramella Petri P (1963) L’influence de la température sur la morphologie de la pomme de terre. European Potato Journal 6:242–257.

    Article  Google Scholar 

  • Scholte K (1987) Relation between storage T sum and vigour of seed potatoes. Pages 28–29 in EAPR Abstracts of Conference Papers and Posters, 10th Triennial Conference of the European Association for Potato Research, Aalborg, Denmark.

    Google Scholar 

  • Scholte K (1989) Effect of daylength and temperature during storage in light on growth vigour of seed potatoes. Potato Research 32:214–215 (Abstr.).

    Article  Google Scholar 

  • Snyder R G, Ewing E E (1989) Interactive effects of temperature, photoperiod, and cultivar on tuberization of potato cuttings. HortScience 24:336–338.

    Google Scholar 

  • Spitters C J T (1990) Crop growth models: their usefulness and limitations. In Dekker P H M, Booij R (Eds.) Proceedings of the 6th Symposium on the Timing of Field Production of Vegetables, Wageningen, August 1989. Acta Horticulturae 267: 349–368.

    Google Scholar 

  • Steward F C, Moreno U, Roca W M (1981) Growth, form and comp osition of potato plants as affected by environment. Annals of Botany 48 (Supplement 2): 1–45.

    Google Scholar 

  • Struik P C (1991) Plant tissue culture techniques (with special reference to the potato plant). Pages 66–97 in Chapter 4 of Modern Biotechnology in Food Production. Open University & Thomas Polytechnic. Butterworth-Heinemann, Oxford, UK.

    Google Scholar 

  • Struik P C, Boon E J, Vreugdenhil D (1987) Effects of extracellular extracts from leaves on the tuberization of cuttings of potato (Solanum tuberosum L.). Plant Physiology 84:214–217.

    Article  PubMed  CAS  Google Scholar 

  • Struik P C, Geertsema J, Custers C H M G (1989a) Effects of shoot, root and stolon temperature on the development of the potato (Solanum tuberosum L.) plant. II. Development of stolons. Potato Research 32:143–150.

    Article  Google Scholar 

  • Struik P C, Geertsema J, Custers C H M G (1989b) Effects of shoot, root and stolon temperature on the development of the potato (Solanum tuberosum L.) plant. III. Development of tubers. Potato Research 32:151–158.

    Article  Google Scholar 

  • Struik P C, Geertsema J, Custers C H M G (1989c) Effects of shoot, root and stolon temperature on the development of the potato (Solanum tuberosum L.) plant. I. Development of the haulm. Potato Research 32:133–141.

    Article  Google Scholar 

  • Struik P C, Haverkort A J, Vreugdenhil D, Bus C B, Dankert R (1990) Manipulation of tuber-size distribution of a potato crop. Potato Research 33:417–432.

    Article  Google Scholar 

  • Struik P C, Van Heusden E, Burger-Meijer K (1988) Effects of short periods of long days on the development, yield and size distribution of tubers of Solanum tuberosum L. cv. Bintje. Netherlands Journal of Agricultural Science 36:11–22.

    Google Scholar 

  • Struik P C, Van Voorst G (1986) Effects of drought on the initiation, yield and size distribution of tubers of Solanum tuberosum L. cv. Bintje. Potato Research 29:487–500.

    Article  Google Scholar 

  • Struik P C, Vreugdenhil D, Haverkort A J, Bus C B, Dankert R (1991) Possible mechanisms of hierarchy among tubers on one stem of a potato (Solanum tuberosum L.) plant. Potato Research 34:187–203.

    Article  Google Scholar 

  • Tibbitts T W, Bennett S M, Cao W (1990) Control of continuous irradiation injury on potatoes with daily temperature cycling. Plant Physiology 93:409–411.

    Article  PubMed  CAS  Google Scholar 

  • Tibbitts T W, Cao W, Wheeler R M (1994) Growth of Potatoes for CELSS. NASA Contractor Report 177646. NASA, Ames Research Center, Moffett Field, CA, USA.

    Google Scholar 

  • Van Dam J, Kooman P L, Struik P C (1995) Effects of temperature and photoperiod on early growth and final number of tubers in potato (Solanum tuberosum L.). (submitted).

    Google Scholar 

  • Van den Berg J H, Bonierbale M W, Ewing E E, Plaisted R L, Tanksley S D (1993) Use of RFLP-linkage to study genetics and physiology of potato tuberization. Pages 278–279 in EAPR Abstracts, 12th Triennial Conference of the European Association for Potato Research, Paris, France.

    Google Scholar 

  • Van den Berg J H, Struik P C, Ewing E E (1989) One-leaf cuttings as a model to study second growth in the potato (Solanum tuberosum) plant. Annals of Botany 66:273–280.

    Google Scholar 

  • Van der Zaag D E, Van Loon C D (1987) Effects of physiological age on growth vigour of seed potatoes of two cultivars. 5. Review of literature and integration of some experimental results. Potato Research 30:451–472.

    Article  Google Scholar 

  • Van Heemst H J D (1986) The distribution of dry matter during growth of the potato crop. Potato Research 29:55–66.

    Article  Google Scholar 

  • Van Ittersum M K (1992a) Relation between growth conditions and dormancy of seed potatoes. 3. Effects of light. Potato Research 35:377–387.

    Article  Google Scholar 

  • Van Ittersum M K (1992b) Dormancy and Growth Vigour of Seed Potatoes. Ph.D. Thesis. Wageningen Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Van Ittersum M K (1993) Advancing growth vigour of seed potatoes by storage temperature regimes. Netherlands Journal of Agricultural Science 41:23–36.

    Google Scholar 

  • Van Ittersum M K, Scholte K (1992a) Relation between growth conditions and dormancy of seed potatoes. 2. Effects of temperature. Potato Research 35:365–375.

    Article  Google Scholar 

  • Van Ittersum M K, Scholte K (1992b) Shortening dormancy of seed potatoes by storage temperatures. Potato Research 35:389–401.

    Article  Google Scholar 

  • Van Loon C D (1987) Effect of physiological age on growth vigour of seed potatoes of two cultivars. 4. Influence of storage and storage temperature on growth and yield in the field. Potato Research 30:441–450.

    Article  Google Scholar 

  • Vos J (1995) Nitrogen and the growth of potato crops. Pages 115–128 in Haverkort A J, MacKerron D K L (Eds.) Potato Ecology and Modelling of Crops under Conditions Limiting Growth. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Vreugdenhil D, Helder H (1992) Hormonal and metabolic control of tuber formation. Pages 393– 400 in Karssen C M, Van Loon L C, Vreugdenhil D (Eds.) Progress in Plant Growth Regulation. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Vreugdenhil D, Struik P C (1989) An integrated view of the hormonal regulation of tuber formation in potato (Solanum tuberosum). Physiologia Plantarum 75:525–531.

    Article  CAS  Google Scholar 

  • Wheeler R M, Steffen K L, Tibbitts T W, Palta J P (1986) Utilization of potatoes for life support systems. II. The effects of temperature under 24-h and 12-h photoperiods. American Potato Journal 63:639–647.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler R M, Tibbitts T W (1986) Growth and tuberization of potato (Solanum tuberosum L.) under continuous light. Plant Physiology 80:801–804.

    Article  PubMed  CAS  Google Scholar 

  • Winkler E (1971) Kartoffelbau in Tirol. II. Photosynthesevermogen und Respiration von verschiedenen Kartoffelsorten. Potato Research 14:1–18.

    Article  CAS  Google Scholar 

  • Wolf S, Marani A, Rudich J (1990) Effects of temperature and photoperiod on assimilate partitioning in potato plants. Annals of Botany 66:515–520.

    Google Scholar 

  • Wurr D C E (1977) Some observations on patterns of tuber formation and growth in the potato. Potato Research 20:63–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Struik, P.C., Ewing, E.E. (1995). Crop physiology of potato (Solanum tuberosum): responses to photoperiod and temperature relevant to crop modelling. In: Haverkort, A.J., MacKerron, D.K.L. (eds) Potato Ecology And modelling of crops under conditions limiting growth. Current Issues in Production Ecology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0051-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0051-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4028-0

  • Online ISBN: 978-94-011-0051-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics