Skip to main content

Application of Er-Doped Fiber Amplifiers to Optical Measurement Techniques

  • Chapter
Trends in Optical Fibre Metrology and Standards

Part of the book series: NATO ASI Series ((NSSE,volume 285))

  • 529 Accesses

Abstract

Optical-fiber-based measurements directly translate the physical quantities being detected into optical quantities such as optical intensity, phase, frequency or polarization by utilizing the characteristics of optical fiber. Intrinsic measurements, those that use optical fibers directly for measurement purposes, make the best use of the unique mechanical and optical properties of optical fibers and can capture very minute physical forces. Interferometric measurements, in particular, are very sensitive. The typical system consists of a light source, sensor head, interferometer and signal processing circuits. Although such components and related technologies have been intensively studied, further improvement is still desired in many respects. Toward this end, recently-developed optical-amplification techniques are expected to play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Schmuck, TH. Pfeiffer and G. Veith, “Widely tunable narrow linewidth erbium doped fiber ring laser”, Electron. Lett., Vol. 27, No. 23, pp. 2117–2119, 1991

    Article  ADS  Google Scholar 

  2. J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stutz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren and R. M. Jopson, “Single mode diode-pumped tunable erbium-doped fiber laser with linewidth less than 5.5 kHz”, Electron. Lett., Vol. 27, No. 23, pp. 2148–2149, 1991

    Article  ADS  Google Scholar 

  3. K. Iwatsuki, H. Okamura and M. Saruwatari, “Wavelength tunable single-frequency and single polarization Er-doped fiber ring laser with 1.4 kHz linewidth”, Electron. Lett., Vol. 26, No. 24, pp. 2033–2035, 1990

    Article  ADS  Google Scholar 

  4. T. Okoshi, K. Kikuchi and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum”, Electron. Lett., Vol. 16, pp. 630–631, 1980

    Article  ADS  Google Scholar 

  5. H. Sabert., “Suppression of mode jumps in a single mode fiber lase”, Opt. Lett., Vol. 19, NO. 2, pp. 111–113, 1994

    Article  ADS  Google Scholar 

  6. H. Okamura and K. Iwatsuki, “Simultaneous oscillation of wavelength-tunable, single-mode lasers using an Er-doped fiber amplifier”, Electron. Lett., Vol. 28, No. 5, pp. 461–463, 1992

    Article  ADS  Google Scholar 

  7. J. W. Dawson, N. Park and K. J. Vahala, “Co-lasing in an electrically tunable erbium-doped fiber laser”, Appl. Phys. Lett., Vol. 60, No. 25, pp. 3090–3092, 1992

    Article  ADS  Google Scholar 

  8. N. Park, J. W. Dawson, and K. J. Vahala, “Multiple wavelength operation of an Erbium-doped fiber laser”, IEEE Photon. Technol. Lett., Vol. 4 No. 6, pp. 540–541, 1992

    Article  ADS  Google Scholar 

  9. M. J. Pettitt, A. Hadjifotiou and R. A. Baker, “Crosstalk in erbium doped fiber amplifiers”, Electron. Lett., Vol. 25, No. 6, pp. 416–417, 1989

    Article  Google Scholar 

  10. E. Desurvier, J. W. Sulhoff, J. L. Zyskind and J. R. Simpson, “Study of spectral dependence of gain saturation and effect of inhomogeneous broadening in Erbium-doped Aluminosilicate fiber amplifiers”, IEEE Photon. Technol. Lett., Vol. 2, No. 9, pp. 653–655, 1990

    Article  ADS  Google Scholar 

  11. S. Norimatsu and K. Iwashita, “10 Gbit/s optical PSK homodyne transmission experiment using external cavity DFB LDs”, Electron. Lett., Vol. 26, No. 10, pp. 648–649, 1990

    Article  Google Scholar 

  12. S. Kobayashi and T. Kimura, “Coherence of injection phase-locked AlGaAs semiconductor laser”, Electron. Lett., vol. 16, No. 17, pp. 668–670, 1980)

    Article  ADS  Google Scholar 

  13. H. Okamura and K. Iwatsuki, “Fiber optic sensor using an injection-locked local laser”, IEEE J. Lightwave Technol., Vol. 9, No. 4, pp. 552–557, 1991

    Article  ADS  Google Scholar 

  14. D. A. Jackson, A. Preiest and A. Dandridge, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber”, Appl. Opt., vol. 19, pp. 2926–2929, 1980.

    Article  ADS  Google Scholar 

  15. C. J. Buczek, R. J. Freiberg, “Hybrid injection locking of high power CO2 lasers”, IEEE J. QE., Proc. IEEE, Vol. QE-8, No. 7, pp. 641–650, 1972

    Article  ADS  Google Scholar 

  16. S. Kobayashi, Y. Yamamoto and K. Kimura, “Optical FM signal amplification and FM noise reduction in an injection locked AlGaAs semiconductor laser”, Electron. Lett., vol. 17, No. 22, pp. 849–851, 1981

    Article  Google Scholar 

  17. S. K. Sheem, “Fiber-optic gyroscope with (3x3) directional coupler”, Appl. Phys. Lett., Vol. 37, No. 10, pp. 869–871, 1980

    Article  ADS  Google Scholar 

  18. Th. Niemeier and R. Ulrich, “Quadrature outputs from fiber interferometer with 4x4 coupler”, Opt. Lett., Vol. 11. No. 10, pp. 677–679, 1986

    Article  ADS  Google Scholar 

  19. J. Stone and D. Marcuse, “Ultrahigh finesse fiber Fabry-Perot interferometer”, IEEE J. Lightwave Technol., Vol. LT-4, No. 4, pp. 382–385, 1986

    Article  ADS  Google Scholar 

  20. C. Y. Yue, J. D. Peng, Y. B. Liao and B. K. Zhou, “Fiber ring resonator with finesse of 1260”, Electron. Lett., Vol. 24, No. 10, pp. 622–623, 1988

    Article  Google Scholar 

  21. J. E. Bowers, S. A. Newton, W. V. Sorin and H. J. Shaw, “Filter response of single-mode fiber recirculating delay lines”, Electron. Lett., Vol. 18, No. 3, pp. 110–111, 1982

    Article  ADS  Google Scholar 

  22. Y. H. Ja, “Single-mode optical fiber and loop resonators using degenerate two-wave mixing”, Proc. 7-th OFS, pp. 195–198, 1990

    Google Scholar 

  23. H. Okamura and K. Iwatsuki, “Er-doped fiber ring resonator applied to optical spectrum analyzer with less than 100 kHz resolution”, Electron. Lett., Vol. 27, No. 12, pp.1047–1049, 1991

    Article  Google Scholar 

  24. H. Okamura and K. Iwatsuki, “A finesse enhanced Er-doped fiber ring resonator”, IEEE J. Lightwave Technol., Vol. 9, No.11, pp. 1991

    Google Scholar 

  25. T. Okoshi, K. Kikuchi and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum”, Electron. Lett., Vol. 16, pp. 630–631, 1980

    Google Scholar 

  26. H. Okamura and K. Iwatsuki, “Fiber optic sensor using an injection-locked local laser”, IEEE J. Lightwave Technol., Vol. 9, No. 4, pp. 552–557, 1991

    Article  ADS  Google Scholar 

  27. K. Kalli and D. A. Jackson, “Ring resonator optical spectrum analyzer with 20-kHz resolution”, Opt. Lett., Vol. 17, No. 15, pp.1090–1092, 1992

    Article  ADS  Google Scholar 

  28. P. Urquhart, “Compound optical-fiber-based resonators”, J. Opt. Soc. Am. A, Vol. 5, No. 6, pp. 803–812, 1988

    Article  ADS  Google Scholar 

  29. I. P. Kaminow, P. P. Iannone, J. Stone and L. W. Stutz, “ A tunable vernier fiber Fabry-Perot filter for FDM demultiplexing and detection”, Photon. Technol. Lett., Vol. 1, No. 1, pp. 24–26, 1989

    Article  ADS  Google Scholar 

  30. K. Oda, N. Takato and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems”, IEEE J. Lightwave Technol., Vol. 9, No. 6, pp. 728–736, 1991

    Article  ADS  Google Scholar 

  31. M. Zirngibl, “Gain control in Erbium-doped fiber amplifiers by an all-optical feedback loop”, Electron. Lett., Vol. 27, No. 7, pp.560–561, 1991

    Article  Google Scholar 

  32. H. Okamura, “Automatic optical-loss compensation with an Er-doped fib er amplifier”, Electron. Lett. Vol. 27, No. 23, pp. 2155–2156

    Google Scholar 

  33. R. I. Laming, L. Reekie, P. R. Morkel and D. N. Payne, “Multichannel crosstalk and pump noise characterization of Er3+-doped fiber amplifier pumped at 980 nm”, Electron. Lett., Vol. 25, No. 7, pp. 455–456, 1989

    Article  Google Scholar 

  34. K. Inoue, H. Toba, N. Shibata, K. Iwatsuki and A. Takada, “Mutual signal gain saturation in Er3+-doped fiber amplifier around 1.54 pm wavelength”, Electron. Lett., Vol. 25, No. 9, pp. 594–595, 1989

    Article  Google Scholar 

  35. M. Zirngibl, “Gain control in erbium-doped fiber amplifiers by an all optical feed back loop”, Electron. Lett., Vol. 27, No. 7, pp. 560–561, 1991

    Article  Google Scholar 

  36. M. Zirngibl, “All optical remote gain switching in Er-doped fiber amplifiers”, Electron. Lett., Vol. 27, No. 13, pp. 1164–1166, 1991

    Article  Google Scholar 

  37. E. Desurvire, C. R. Giles and J. R. Simpson, “Gain saturation effects in highspeed, multichannel Erbium-doped fiber amplifiers at λ=1.53 pin”, IEEE J. Lightwave Technol., Vol. 7, No. 12, pp. 2095–2104, 1989

    Article  ADS  Google Scholar 

  38. E. Desurvire and J. R. Simpson, “Evaluation of 4I15/2 and 4I13/2 Stark-level energies in erbium-doped aluminosilicate glass fibers”, Opt. Lett., Vol. 15, No. 10, pp. 547–549, 1990

    Article  ADS  Google Scholar 

  39. J. L. Zyskind, E. Desurvire, J. W. Sulhoff and D. J. DiGiovanni, “Determination of homogeneous linewidth by spectral gain hole-burning in an Erbium-doped fiber amplifier with Ge02:Si02 core”, IEEE Photon. Technol. Lett., Vol. 2, No. 12, pp. 869–871, 1990

    Article  ADS  Google Scholar 

  40. A. A. M. Saleh, “Optical WDM technology for networking and switching applications”. OFC’92, ThC1, 1992

    Google Scholar 

  41. G. Grosskopf, R. Ludwig and H. G. Weber, “140 Mbit/s DPSK transmission using an all-optical frequency converter with a 4000 GHz conversion range”, Electron. Lett., Vol. 24, pp. 1106–1107, 1988

    Article  Google Scholar 

  42. P. Pottier, M. J. Chawki, R. Auffret, G. Klaveau and A. Tromeur, “1.5 Gb/s transmission system using all optical wavelength converter based on tunable two-electrode DFB laser”, Electron. Lett., Vol. 27, No. 23, pp. 2183–2185, 1991

    Article  ADS  Google Scholar 

  43. B. Mikkelsen, T. Durhuns, R. J. Pedersen and K. E. Stubkjaer, “Penalty free wavelength conversion of 2.5 Gbit/s signals using a tuneable DBR-laser”, ECOC’92, WeA10.4, 1992

    Google Scholar 

  44. M. Oberg, S. Nilsson, T. Klinga and P. Ojala, “A Three-Electrode Distributed Bragg Reflector Laser with 22 nm Wavelength Tuning Range”, IEEE Photon. Technol. Lett., Vol. 3, No. 4, pp. 299–301, 1991

    Article  ADS  Google Scholar 

  45. T. Durhuus, B. Fernier, P. Garabedian, F. Lebrond, J. L. Lafragette, B. Mikkelsen, C. G. Joergensen and K. E. Stubkjaer, “High-speed all-optical gating using a two-section semiconductor optical amplifier structure”, CLEO’ 92, CThS4

    Google Scholar 

  46. M. J. Adams, J. V. Collins and I. D. Henning, “Analysis of semiconductor laser optical amplifiers”, IEE Proceedings, Vol. 132, Pt. J, No. 1, pp. 58–63, 1985

    Google Scholar 

  47. E. Desurvire, “Analysis of transient gain saturation and recovery in Erbium-doped fiber amplifiers”, Photon. Technol. Lett., Vol. 1, No. 8, pp. 196–199, 1989

    Article  ADS  Google Scholar 

  48. Siegman, ‘LASERS’ University Science Book, Mill Valley, California(1986).

    Google Scholar 

  49. T. Kitagawa, K. Hattori, Y. Hibino, Y. Ohmori and M. Horiguchi, “Laser oscillation in Er-doped silica-based planar ring resonator”, ECOC’92, PDP. 11–5, 1992

    Google Scholar 

  50. Y. Hibino, H. Terui, A. Sugita and Y. Ohmori, “Silica-based optical waveguide ring laser integrated with semiconductor laser amplifier on Si substrata”, Electron. Lett., Vol. 28, No. 20, pp. 1932–1933, 1992

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Okamura, H., Iwatsuki, K. (1995). Application of Er-Doped Fiber Amplifiers to Optical Measurement Techniques. In: Soares, O.D.D. (eds) Trends in Optical Fibre Metrology and Standards. NATO ASI Series, vol 285. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0035-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0035-9_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4020-4

  • Online ISBN: 978-94-011-0035-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics