KdV ’95 pp 389-403 | Cite as

The Reductive Perturbation Method and the Korteweg—de Vries Hierarchy

  • R. A. Kraenkel
  • J. G. Pereira
  • M. A. Manna


By using the reductive perturbation method of Taniuti with the introduction of an infinite sequence of slow time variables τ 1, τ 3, τ 5, …, we study the propagation of long surface-waves in a shallow inviscid fluid. The Korteweg—de Vries (KdV) equation appears as the lowest order amplitude equation in slow variables. In this context, we show that, if the lowest order wave amplitude ζ 0 satisfies the KdV equation in the time τ 3, it must satisfy the (2n +1)th order equation of the KdV hierarchy in the time τ 2n+ 1, with n = 2,3,4,…. As a consequence of this fact, we show with an explicit example that the secularities of the evolution equations for the higher-order terms (ζ 1,ζ 2,…) of the amplitude can be eliminated when ζ 0 is a solitonic solution to the KdV equation. By reversing this argument, we can say that the requirement of a secular-free perturbation theory implies that the amplitude ζ 0 satisfies the (2n+1)th order equation of the KdV hierarchy in the time τ 2n+ 1. This essentially means that the equations of the KdV hierarchy do play a role in perturbation theory. Thereafter, by considering a solitary-wave solution, we show, again with an explicit, example that the elimination of secularities through the use of the higher order KdV hierarchy equations corresponds, in the laboratory coordinates, to a renormalization of the solitary-wave velocity. Then, we conclude that this procedure of eliminating secularities is closely related to the renormalization technique developed by Kodama and Taniuti.

Key words

reductive perturbation method multiple time formalism higher-order evolution equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Korteweg, D. J. and de Vries,G.: Phil. Mag.39 (1895), 422.zbMATHGoogle Scholar
  2. 2.
    Lax, P. D.: Comm. Pure Appl.Math.21 (1968), 467.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Sandri, G.: Il Nuovo Cim.36(1965), 67.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Kodama, Y. and Taniuti, T.: J.Phys. Soc. Japan 45 (1978), 298.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Whitham, G. B.: Linear andNonlinear Waves, Wiley, New York, 1974.Google Scholar
  6. 6.
    Taniuti, T.: Suppl. Prog. Theor.Phys.55 (1974), 1.CrossRefGoogle Scholar
  7. 7.
    Jeffrey, A.and Kawahara, T.: Asymptotic Methods in Nonlinear Wave Theory, Pitman,London,1982.zbMATHGoogle Scholar
  8. 8.
    Miura, R. M.: J. Math. Phys. 9 (1968),1202.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Miura, R. M., Gardner, C. S., andKruskal, M. D.: J. Math. Phys.9 (1968), 1204.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Gardner, C. S.: J. Math. Phys.12(1971), 1548.zbMATHCrossRefGoogle Scholar
  11. 11.
    Novikov, S.,Manakov, S. V., Pitaevskii, L. P., and Zakharov, V. E.: Theory of Solitons, Plenum,New York, 1984.zbMATHGoogle Scholar
  12. 12.
    Dodd, R. K., Eilbeck, J. C.,Gibbon, J. D., and Morris, H. C.: Solitons and Nonlinear Waves,Academic, London, 1982.Google Scholar
  13. 13.
    We thank A. Degasperis and P. M.Santini for useful comments on this point.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • R. A. Kraenkel
    • 1
  • J. G. Pereira
    • 1
  • M. A. Manna
    • 2
  1. 1.Instituto de Física TeóricaUniversidade Estadual PaulistaSão PauloBrazil
  2. 2.Physique Mathématique et ThéoriqueUniversité de Montpellier IIMontpellier, Cedex 05France

Personalised recommendations