Advertisement

KdV ’95 pp 315-333 | Cite as

On New Trace Formulae for Schrödinger Operators

  • F. Gesztesy
  • H. Holden

Abstract

We review a variety of recently obtained trace formulae for (multidimensional) Schrödinger operators and indicate their connections with the KdV hierarchy in one dimension. Our principal new result in this paper concerns a set of trace formulae in 1 ⩽ d ⩽ 3 dimensions related to point interactions.

Key words

trace formulas Schrödinger operators Krein’s spectral shift function KdV hierarchy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albeverio, S., Gesztesy, F., Høegh-Krohn, R., and Holden, H.: Solvable Models in Quantum Mechanics, Springer, New York, 1988.zbMATHCrossRefGoogle Scholar
  2. 2.
    Aronszajn, N. and Donoghue, W. F.: On exponential representations of analytic functions in the upper half-plane with positive imaginary part, J. Anal. Math. 5 (1957), 321–388.zbMATHCrossRefGoogle Scholar
  3. 3.
    Chudnovsky, D. V.: One and multidimensional completely integrable systems arising from the isospectral deformation, in: D. Iagolnitzer (ed.), Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Lecture Notes in Physics, Vol. 126, Springer, Berlin, 1980, pp. 352–416.CrossRefGoogle Scholar
  4. 4.
    Craig, W.: The trace formula for Schrödinger operators on the line, Commun. Math. Phys. 126 (1989), 379–407.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Deift, P. and Trubowitz, E.: Inverse scattering on the line, Commun. Pure Appl. Math. 32 (1979), 121–251.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dikii, L. A.: Trace formulas for Sturm-Liouville differential operators, Amer. Math. Soc. Transl. Ser. (2)18 (1961), 81–115.MathSciNetGoogle Scholar
  7. 7.
    Dubrovin, B. A.: Periodic problems for the Korteweg-de Vries equation in the class of finite band potentials, Funct. Anal. Appl. 9 (1975), 215–223.CrossRefGoogle Scholar
  8. 8.
    Flaschka, H.: On the inverse problem for Hill’s operator, Arch. Rat. Mech. Anal. 59 (1975), 293–309.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Gelfand, I. M.: On identities for the eigenvalues of a second-order differential operator, Uspehi Mat. Nauk 11(1) (1956), 191–198 (in Russian).MathSciNetGoogle Scholar
  10. 10.
    Gelfand, I. M. and Dikii, L. A.: Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations, Russ. Math. Surv. 30(5) (1975), 77–113.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gelfand, I. M. and Levitan, B. M.: On a simple identity for the eigenvalues of a second-order differential operator, Dokl. Akad. Nauk SSSR 88 (1953), 593–596 (in Russian).MathSciNetGoogle Scholar
  12. 12.
    Gesztesy, F.: A complete spectral characterization of the double commutation method, J. Funct. Anal. 117 (1993), 401–446.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Gesztesy, F.: New trace formulas for Schrödinger operators, in: G. Ferreyra, G. Goldstein, F. Neubrander (eds.), Evolution Equations, Marcel Dekker, New York, 1995, pp. 201–221.Google Scholar
  14. 14.
    Gesztesy, F. and Holden, H.: Trace formulas and conservation laws for nonlinear evolution equations, Rev. Math. Phys. 6 (1994), 51–95.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Gesztesy, F. and Simon, B.: The ξ function, Acta Math, (to appear).Google Scholar
  16. 16.
    Gesztesy, F., Holden, H., and Simon, B.: Absolute summability of the trace relation for certain Schrödinger operators, Commun. Math. Phys. (to appear).Google Scholar
  17. 17.
    Gesztesy, F., Karwowski, W., and Zhao, Z.: New types of soliton solutions, Bull. Amer. Math. Soc. (New Series) 27 (1992), 266–272.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Gesztesy, F., Karwowski, W., and Zhao, Z.: Limits of soliton solutions, Duke Math. J. 68 (1992), 101–150.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Gesztesy, F., Holden, H., Simon, B., and Zhao, Z.: Trace formulae and inverse spectral theory for Schrödinger operators, Bull. Amer. Math. Soc. (New Series) 29 (1993), 250–255.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Gesztesy, F., Holden, H., Simon, B., and Zhao, Z.: Higher order trace relations for Schrödinger operators, Rev. Math. Phys. (to appear).Google Scholar
  21. 21.
    Gesztesy, F., Holden, H., Simon, B., and Zhao, Z.: A trace formula for multidimensional Schrödinger operators, preprint.Google Scholar
  22. 22.
    Hochstadt, H.: On the determination of a Hill’s equation from its spectrum, Arch. Rat. Mech. Anal. 19 (1965), 353–362.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Kotani, S. and Krishna, M.: Almost periodicity of some random potentials, J. Funct. Anal. 78 (1988), 390–405.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Krein, M. G.: Perturbation determinants and a formula for the traces of unitary and self-adjoint operators, Sov. Math. Dokl. 3 (1962), 707–710.Google Scholar
  25. 25.
    Lax, P. D.: Trace formulas for the Schroedinger operator, Commun. Pure Appl. Math. 47 (1994), 503–512.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Levitan, B. M.: On the closure of the set of finite-zone potentials, Math. USSR Sbornik 51 (1985), 67–89.zbMATHCrossRefGoogle Scholar
  27. 27.
    Levitan, B. M.: Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987.zbMATHGoogle Scholar
  28. 28.
    Marchenko, V. A.: Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986.zbMATHGoogle Scholar
  29. 29.
    McKean, H. P. and van Moerbeke, P.: The spectrum of Hill’s equation, Invent. Math. 30 (1975), 217–274.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Papanicolaou, V.: Trace formulas and the behavior of large eigenvalues, SIAM J. Math. Anal, to appear.Google Scholar
  31. 31.
    Perelomov, A. M.: Schrödinger equation spectrum and Korteweg-de Vries type invariants, Ann. Inst. H. Poincaré, Sect. A 24 (1976), 161–164.MathSciNetzbMATHGoogle Scholar
  32. 32.
    Trubowitz, E.: The inverse problem for periodic potentials, Commun. Pure Appl. Math. 30 (1977), 321–337.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Venakides, S.: The infinite period limit of the inverse formalism for periodic potentials, Commun. Pure Appl. Math. 41 (1988), 3–17.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Wilk, S. F. J., Fujiwara, S., and Osborn, T. A.: N-body Green’s function and their semiclassical expansion, Phys. Rev. 24A (1981), 2187–2202.MathSciNetGoogle Scholar
  35. 35.
    Zakharov, V. E. and Faddeev, L. D.: Korteweg-de Vries equation: a completely integrable Hamiltonian system, Funct. Anal. Appl. 5 (1971), 280–287.CrossRefGoogle Scholar
  36. 36.
    Zorbas, J.: Perturbation of self-adjoint operators by Dirac distributions, J. Math. Phys. 21 (1980), 840–847.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • F. Gesztesy
    • 1
  • H. Holden
    • 2
  1. 1.Department of MathematicsUniversity of MissouriColumbiaUSA
  2. 2.Department of Mathematical Sciences, Norwegian Institute of TechnologyUniversity of TrondheimTrondheimNorway

Personalised recommendations