Advertisement

KdV ’95 pp 245-276 | Cite as

Symmetry Reductions and Exact Solutions of Shallow Water Wave Equations

  • Petter A. Clarkson
  • Elizabeth L. Mansfield

Abstract

In this paper we study symmetry reductions and exact solutions of the shallow water wave (SWW) equation
$$ {u_{xxxt}} + \alpha {u_x}{u_{xt}} + \beta {u_t}{u_{xx}} -{u_{xt}} -{u_{xx}} = 0,$$
where α and ß are arbitrary, nonzero, constants, which is derivable using the so-called Boussinesq approximation. Two special cases of this equation, or the equivalent nonlocal equation obtained by setting u x = U, have been discussed in the literature. The case α = 2ß was discussed by Ablowitz, Kaup, Newell and Segur (Stud. Appl. Math., 53 (1974), 249), who showed that this case was solvable by inverse scattering through a second-order linear problem.This case and the case α = ß were studied by Hirota and Satsuma (J. Phys. Soc. Japan, 40 (1976), 611) using Hirota’s bi-linear technique. Further, the case α = ß is solvable by inverse scattering through a third-order linear problem.

In this paper, a catalogue of symmetry reductions is obtained using the classical Lie method and the nonclassical method due to Bluman and Cole (J. Math. Mech., 18 (1969), 1025). The classical Lie method yields symmetry reductions of (1) expressible in terms of the first, third and fifth Painlevé transcendents and Weierstrass elliptic functions. The nonclassical method yields a plethora of exact solutions of (1) with α = ß which possess a rich variety of qualitative behaviours. These solutions all like a two-soliton solution for t < 0 but differ radically for t > 0 and may be viewed as a nonlinear superposition of two solitons, one travelling to the left with arbitrary speed and the other to the right with equal and opposite speed. These families of solutions have important implications with regard to the numerical analysis of SWW and suggests that solving (1) numerically could pose some fundamental difficulties. In particular, one would not be able to distinguish the solutions in an initial-value problem since an exponentially small change in the initial conditions can result in completely different qualitative behaviours.

We compare the two-soliton solutions obtained using the nonclassical method to those obtained using the singular manifold method and Hirota’s bi-linear method.

Further, we show that there is an analogous nonlinear superposition of solutions for two (2+1) dimensional generalisations of the SWW Equation (1) with α = ß. This yields solutions expressible as the sum of two solutions of the Korteweg—de Vries equation.

Key words

symmetry reductions exact solutions shallow water wave equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ablowitz, M. J. and Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse ScatteringLect. Notes Math., Vol. 149, C.U.P., Cambridge, 1991.zbMATHCrossRefGoogle Scholar
  2. 2.
    Ablowitz, M. J., Kaup, D. J.,Newell, A. C., and Segur, H.: Stud. Appl. Math. 53 (1974), 249–315.MathSciNetGoogle Scholar
  3. 3.
    Ablowitz, M. J., Ramani, A., andSegur, H.: Phys. Rev. Lett. 23 (1978), 333–338.MathSciNetGoogle Scholar
  4. 4.
    Ablowitz, M. J., Ramani, A., andSegur, H.: J. Math. Phys. 21 (1980), 715–721.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Ablowitz, M. J., Schober, C.,and Herbst, B. M.: Phys. Rev. Lett. 71 (1993), 2683–2686.CrossRefGoogle Scholar
  6. 6.
    Ablowitz, M. J. and Villarroel, J.:Stud. Appl. Math. 85 (1991), 195–213.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Anderson, R. L. and Ibragimov, N.H.: Lie-Bäcklund Transformationsin Applications, SIAM, Philadelphia,1979.CrossRefGoogle Scholar
  8. 8.
    Benjamin, T. B., Bona, J. L., andMahoney, J.: Phil. Trans. R. Soc. Lond. Ser. A 272 (1972), 47–78.zbMATHCrossRefGoogle Scholar
  9. 9.
    Bluman, G. W. and Cole, J. D.: J.Math. Mech. 18 (1969), 1025–1042.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bluman, G. W. and Kumei, S.: Symmetriesand Differential Equationsin Appl. Math. Sci., Vol. 81, Springer-Verlag, Berlin,1989.Google Scholar
  11. 11.
    Bogoyavlenskii, O. I.: Math.USSR lives. 34 (1990), 245–259.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bogoyavlenskii, O. I.: Russ.Math. Surv. 45 (1990), 1–86.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Boiti, M., Leon, J. J-P, Manna, M.,and Pempinelli, F.: Inverse Problems 2 (1986), 271–279.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Buchberger,B.: in J. Rice(ed.), Mathematical Aspects of Scientific SoftwareSpringer-Verlag, 1988, pp.59–87.CrossRefGoogle Scholar
  15. 15.
    Champagne, B., Hereman, W., andWinternitz, P.: Comp. Phys. Comm. 66 (1991), 319–340.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Clarkson, P. A.: Nonclassicalsymmetry reductions for the Boussinesq equation, in Chaos, Solitons and Fractals, 1994, to appear.Google Scholar
  17. 17.
    Clarkson, P. A. and Kruskal, M. D.:J. Math. Phys. 30 (1989), 2201–2213.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Clarkson, P. A. and Mansfield, E.L.: Physica D 70 (1994), 250–288.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Clarkson, P. A. and Mansfield, E.L.: Nonlinearity 7 (1994), 975–1000.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Clarkson, P.A. and Mansfield, E. L.: Algorithms for the nonclassical method of symmetry reductions, SIAM J. Appl. Math1994, toappear.Google Scholar
  21. 21.
    Clarkson, P. A. and Mansfield, E.L.: Exact solutions for some (2 + 1)-dimensional shallow water wave equations,Preprint, Department of Mathematics, University of Exeter, 1994.Google Scholar
  22. 22.
    Cole, J. D.: Quart. Appl Math 9 (1951),225–236.MathSciNetzbMATHGoogle Scholar
  23. 23.
    Conte, R. and Musette, M.: J. Math. Phys. 32(1991), 1450–1457.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Deift, P.,Tomei, C., and Trubowitz,E.: Comm. Pure Appl. Math. 35 (1982), 567–628.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Dorizzi, B., Grammaticos, B., Ramani, A., andWinternitz, P.: J. Math. Phys. 27 (1986), 2848–2852.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Espinosa, A. and Fujioka, J.: J. Phys. Soc. Japan 63(1994), 1289–1294.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Gardner, C. S., Greene, J. M.,Kruskal, M. D., and Miura, R.: Phys. Rev. Lett. 19 (1967), 1095–1097.zbMATHCrossRefGoogle Scholar
  28. 28.
    Gilson, C. R., Nimmo, J. J. C., and Willox, R.: Phys.Lett. 180A(1993), 337–345.MathSciNetGoogle Scholar
  29. 29.
    Fushchich, W. I.: Ukrain. Math. J. 43 (1991),1456–1470.MathSciNetGoogle Scholar
  30. 30.
    Hereman, W.: Euromath Bull. 1(2) (1994), 45–79.MathSciNetzbMATHGoogle Scholar
  31. 31.
    Hietarinta, J.: in R. Conte and N.Boccara (eds), Partially Integrable Evolution Equations in PhysicsNATOASI Series C: Mathematical and Physical Sciences, Vol. 310, Kluwer, Dordrecht,1990, pp. 459–478.CrossRefGoogle Scholar
  32. 32.
    Hirota, R.: in R. K. Bullough andP. J. Caudrey (eds), Solitons, Topics in Current Physics, Vol. 17, Springer-Verlag, Berlin,1980, pp. 157–176.Google Scholar
  33. 33.
    Hirota, R. and Itô, M.: J. Phys. Soc. Japan 52 (1983), 744–748.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Hirota, R. and Satsuma, J.: J. Phys. Soc. Japan 40(1976), 611–612.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Hopf, E.: Comm.Pure Appl. Math. 3 (1950), 201–250.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Ince, E. L.: Ordinary Differential EquationsDover,New York, 1956.Google Scholar
  37. 37.
    Jimbo, M. and Miwa, T.: Publ.R.I.M.S. 19 (1983), 943–1001.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Leble, S. B. and Ustinov, N. V: Inverse Problems 210(1994), 617–633.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Levi, D. and Winternitz, P.: J. Phys. A: Math. Gen. 22(1989), 2915–2924.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Mansfield, E.L.: Diffgrob2: A symbolic algebrapackage for analysing systems of PDE using Maple,ftp euclid.exeter.ac.uk,login: anonymous, password: your email address, directory: pub/liz, 1993.Google Scholar
  41. 41.
    Mansfield, E.L. and Fackerell, E. D.: Differential Gröbner Bases, Preprint 92/108, Macquarie University, Sydney, Australia, 1992.Google Scholar
  42. 42.
    McLeod, J. B. and Olver, P. J.: SIAM J. Math. Anal. 14(1983), 488–506.MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Musette, M., Lambert, F., and Decuyper,J. C.: J. Phys. A: Math. Gen. 20(1987), 6223–6235.MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Olver, P. J.: Applications ofLie Groups to Differential Equations2nd edn, Graduate Texts Math., Vol.107, Springer-Verlag, New York, 1993.CrossRefGoogle Scholar
  45. 45.
    Olver, P. J. and Rosenau, P.: Phys. Lett. 114A(1986), 107–112.MathSciNetGoogle Scholar
  46. 46.
    Olver, P. J. and Rosenau, P.: SIAM J. Appl. Math. 47(1987), 263–275.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Peregrine, H.: J. Fluid Mech. 25 (1966),321–330.CrossRefGoogle Scholar
  48. 48.
    Reid, G. J.: J. Phys. A: Math. Gen. 23 (1990),L853–L859.zbMATHCrossRefGoogle Scholar
  49. 49.
    Reid, G. J.: Europ. J. Appl. Math. 2 (1991),293–318.zbMATHCrossRefGoogle Scholar
  50. 50.
    Reid, G. J. and Wittkopf, A.:A Differential Algebra Package for Maple, ftp 137.82.36.21 login: anonymous,password: your email address, directory: pub/standardform, 1993.Google Scholar
  51. 51.
    Schwarz, F.: Computing 49 (1992), 95–115.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Tamizhmani, K. M. and Punithavathi, P.: J. Phys.Soc. Japan 59 (1990), 843–847.MathSciNetCrossRefGoogle Scholar
  53. 53.
    Topunov, V. L.: Acta Appl. Math. 16 (1989),191–206.MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Weiss, J.: J. Math. Phys. 24(1983), 1405–1413.MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Weiss, J., Tabor, M., andCarnevale, G.: J. Math. Phys. 24(1983), 522–526.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Whittaker, E. E. and Watson, G. M.: Modern Analysis4th edn, C.U.P., Cambridge, 1927.zbMATHGoogle Scholar
  57. 57.
    Winternitz,P.: Lie groups and solutions of nonlinear partial differential equations, in L.A. Ibort and M. A. Rodriguez (eds), Integrable Systems, Quantum Groups, andQuantum Field TheoriesNATO ASISeries C, Vol. 409, Kluwer, Dordrecht, 1993, pp. 429–495.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Petter A. Clarkson
    • 1
  • Elizabeth L. Mansfield
    • 1
  1. 1.Department of MathematicsUniversity of ExeterExeterUK

Personalised recommendations